• Title/Summary/Keyword: 하중-변위 관계

Search Result 332, Processing Time 0.025 seconds

The Flexural and Shear Behaviors of Steel-PSC Mixed Structural System with Front-Rear Plate Connection (전·후면판 공용방식 접합부를 갖는 강-PSC 혼합구조의 휨 및 전단거동)

  • Lho, Byeong-Cheol;Cho, Sung-Yong;Park, Hyun-Chul;Kim, Mun-Kyum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.201-212
    • /
    • 2007
  • This study presents experimental results of Steel-PSC mixed structural system having front-rear plate connection between Steel and Prestressed Concrete. Two kinds of Steel-PSC mixed structural system of 5.4m length were tested to evaluate flexural behaviors under four point loading, and 4 kinds of specimens with and without prestressing force at R & L type connection were tested to observe the shear behavior. Based on the test results of load-deflection curves and failure modes of specimens, it is found that the proposed L shape connection with front-rear plate connection between Steel and Prestressed Concrete has higher strength and stiffness. From the study, Steel-PSC mixed structural system with L shaped connection has a better structural performance in connection part.

Prediction for Large Deformation of Cantilever Beam Using Strains (변형률을 이용한 외팔보의 구조 대변형 예측)

  • Park, Sunghyun;Kim, In-Gul;Lee, Hansol;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.396-404
    • /
    • 2015
  • The UAV's wing has high aspect ratio that is suitable for the high altitude and long endurance. Knowing the real-time deformation of wing structure in flight, it can be utilized in structural health and loading status monitoring, improvement of control effectiveness and extraordinary vibration phenomena using displacement-strain relationship. In this paper, nonlinear displacement prediction algorithm was developed for prediction of large structural deflection in flight. The algorithm was validated through the comparison with finite element analysis results and also experimental results for several large tip displacements of cantilever beam. The predicted displacements using strains are agreed well with the measured values from laser displacement sensor.

Finite Element Analysis of Planar Effect on the Concrete Pavements (유한 요소법에 의한 콘크리트 포장 구조의 평면 거동연구)

  • Jo, Byung Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1091-1096
    • /
    • 1994
  • Since horizontal movements due to shrinkage and thermal gradients in concrete pavements involve no actual load, the stresses induced will be those due to closing of the pavement joints and subbase friction. Consequently, complete derivations of stiffness matrix and equivalent nodal loads due to planar effects on the concrete pavements was throughly undertaken using the finite rectangular elements with two degrees of freedom at each node. The numerical example shows that the tensile stress induced in a pavement due to concrete shrinkage might be negligible except at very long slab and very high coefficient of frictions. However the stresses in conjunction with principal traffic loads might cause cracking problems.

  • PDF

Study on the Comparison of Compression Properties between Aluminum Foam and Honeycomb Sandwich Composites (알루미늄 폼 및 허니컴 샌드위치 복합재료의 압축 특성 비교연구)

  • Bang, Seung-Ok;Cho, Jae-Ung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.602-604
    • /
    • 2011
  • 본 연구에서는 알루미늄 폼 샌드위치 복합재료와 알루미늄 허니컴 샌드위치 복합재료의 면내 외 방향 압축실험으로 하중-변위의 관계를 분석하고 압축 특성을 비교하였다. 만능재료시험기로 1 mm/min 의 속도로 압축을 하였으며, 카메라로 실험과정을 촬영하고 로드셀에서 나오는 데이터를 컴퓨터로 저장하였다. 압축실험의 결과로 알루미늄 폼 및 허니컴 샌드위치 복합재료에서 하중이 증가함에 따라 심재에 좌굴이 발생하였다. 면내 방향 압축실험에서 알루미늄 폼 및 허니컴 샌드위치 시험편에 작용하는 압축 최대하중은 비슷하지만 비중을 고려하면 알루미늄 허니컴 샌드위치 복합재료가 더 우수한 것으로 판단되며, 면외 방향 압축실험에서도 알루미늄 허니컴 샌드위치 복합재료의 압축 최대하중이 알루미늄 폼 샌드위치 복합재료보다 높게 나왔다.

  • PDF

Dynamic Fracture Behaviors of Concrete Three-Point Bend Specimens (콘크리트 삼점휨 시험편의 동적 파괴거동)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.689-697
    • /
    • 2002
  • The dynamic loads and load-point displacements of concrete three-point bend (TPB) specimens had been measured. The average crack velocities measured with strain gages were 0.16 ㎜/sec ∼ 66 m/sec. The fracture energy for crack extension was determined from the difference of the kinetic energy for the load-point velocity and the strain energy without permanent deformation from the measure external work. For all crack velocities, there were micro-cracking for 23 ㎜ crack extension, stable cracking for 61 ㎜ crack extension at the maximum strain energy, and then unstable cracking. The unstable crack extension was arrested at 80 ㎜ crack extension except the tests of 66 m/sec crack velocity. The tests less than 13 ㎜/sec crack velocity and faster than 1.9 m/sec showed static and dynamic fracture behaviors, respectively. In spite of much difference of the load and load-point displacement relations for the crack velocities, the crack velocities of dynamic tests did not affect on fracture energy rate during the stable crack extension due to the reciprocal action of kinetic force, crack extension and strain energy. During stable crack extension, the maximum fracture resistances of the dynamic tests was 147% larger than that of the static tests.

Analysis on the Displacement Constraints of Frames for Plastic Film Greenhouse (플라스틱 필름 온실용 구조재의 변위제한 검토)

  • Yun, Sung-Wook;Choi, Man-Kwon;Lee, Siyoung;Kang, Donghyeon;Kim, Hyeon-Tae;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.273-281
    • /
    • 2016
  • In this study, after carrying out a bending test that targeted the frames of plastic film greenhouse, the load-displacement relationship was analyzed to be used as basic data to develop greenhouse construction and maintenance guidelines. As a result, regardless of the shapes of the specimen, the yield and the maximum load increased as the size of the specimen increased. The displacement also showed the same pattern. A steel pipe showed lower yield and maximum load than a square pipe, and the displacement was large. In the steel pipe case, the displacement under the yield and maximum load was in the range of approximately 1.42-4.20mm and 5.80-24.13mm, respectively. In the square pipe case, the displacement under the yield and maximum load was in the range of approximately 1.62-3.00mm and 3.13-8.01mm, respectively. Further, a large difference was observed between the result of this test and the values calculated by a conventionally provided standard. In particular, not much difference was found from the result of this test in the case of a purlin member from the values provided by previous researches. However, a large difference was observed in the column or main rafter members. Furthermore, when a wide-span and venlo type, which is a glasshouse, was used as a target(h/100 and h/80), the displacement under the yield and maximum load was approximately 28.0mm and 35.0mm, respectively, which showed a large difference compared with the Netherlands standard(14.0mm) of a glasshouse. Further, in the main rafter case, a large difference was observed in the displacement limit according to the width(i.e., span) of the greenhouse where members are used. Therefore, because the displacement limit can vary depending on various factors such as type, form, and size of a greenhouse, we determined that studies or tests that consider these factors should be carried out to reflect them in the construction and maintenance of greenhouses.

Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation (균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도)

  • 김문영;윤희택;곽태영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • The governing equation and force-displacement rotations of a beam-column element on elastic foundation we derived based on variational approach of total potential energy. An exact static and dynamic 4×4 element stiffness matrix of the beam-column element is established via a generalized lineal-eigenvalue problem by introducing 4 displacement parameters and a system of linear algebraic equations with complex matrices. The structure stiffness matrix is established by the conventional direct stiffness method. In addition the F. E. procedure is presented by using Hermitian polynomials as shape function and evaluating the corresponding elastic and geometric stiffness and the mass matrix. In order to verify the efficiency and accuracy of the beam-column element using exact dynamic stiffness matrix, buckling loads and natural frequencies are calculated for the continuous beam structures and the results are compared with F E. solutions.

Finite Element Method for Failure Analysis Considering Large Deformation and Strain Softening (대변형 탄소성유한요오법에 의한 재료의 연화현상을 고려한 파괴거동해석)

  • 김영민
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.29-38
    • /
    • 1997
  • Strain softening is observed for geomaterials such as rocks when they are sheared. The proper computational modelling for strain softening is very important because this behavior is closely related to failure in geotechnical problems. In this paper, we have investigated the proper FEM techniques for modelling strain softening in order to simulate failure behavior numerically. In showing numerical examples, the effects of element shape, mesh pattern and of imperfection and the difference between small and large deformation theories, of displacement control and pressure control after peak have been discussed.

  • PDF

Study on Reinforcement Effect of Circular RC Columns by Helical Bar Under Cyclic Lateral Load (반복 횡하중을 받는 원형 철근콘크리트 기둥의 Helical Bar 보강효과에 대한 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • In this study, quasi-static according to the displacement-controlled (strain control) method tests on RC columns for seismic reinforcement performance in accordance with the provisions of the seismic design and construction before 1992 design code for highway bridges in korea. Used reinforcement that improves the performance of Inorganic Helical Bar, a kind of alloy steel, circular columns were tested outside the seismic reinforcing. In the experiment, fracture behavior, lateral load-displacement relation, ductility and energy assessment evaluation was performed through tests. The variables in experimental are section force of reinforcement, spiral reinforcement spacing, reinforcement method. Improved seismic performance and effect were confirmed through quasi-static test experiments. The results of study confirmed determination the appropriate size of reinforcement, reinforcement forces, spacing and selection of the type required, furthermore, not only mechanical reinforcement but also substitution of high-strength concrete reinforced with concrete cover improved seismic performance.

Analysis of Laterally Loaded Pile-Bent Structure with Varying Cross-sectional Area (변단면 파일벤트 구조의 수평거동 분석)

  • Jeong, Sang-Seom;Sung, Chul-Gyu;Ko, Jun-Young;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.69-75
    • /
    • 2009
  • The load distribution and deformation of pile-bent structures are investigated using a numerical study. A numerical analysis that takes into account the effects of varying cross-sectional area was performed for different pier diameters, loading steps, and soil conditions. Through the comparison study, it is shown that the location of maximum bending moment is almost the same per each loading step, regardless of varying cross-sections. However, the member force (i.e., stress of pile material) has the largest value at the ground surface when the cross-section is changed. Based on the results obtained, it is found that the location of maximum member force influences highly the behavior of pile-bent structure with varying cross-sections for repair works.