• Title/Summary/Keyword: 하중모형

Search Result 889, Processing Time 0.024 seconds

A Study on the Criteria for the Earthquake Safety Evaluation of Fill Dams (필댐의 내진 성능 평가 기준에 대한 고찰)

  • Choo, Yun-Wook;Lee, Sei-Hyun;Kim, Mu-Kwang;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.19-31
    • /
    • 2011
  • The current Korean criteria for seismic performance evaluated by dynamic analysis regulates that the horizontal displacement and vertical settlement of a dam body, including the static deformation, should be within 1% of the dam height. However, there has been weak theoretical support, so that the current criteria have to be validated. Korea is in a region of low or moderate seismicity located inside the Eurasian plate, and few earthquakes with considerable magnitudes and intensities have been recorded in the area. Therefore, in this study, published data measured in overseas countries were collected in order to construct a database and validate the current criteria. In addition, dynamic centrifuge tests and a parametric study using numerical simulations were performed in order to investigate the effect on the horizontal displacement and settlement of a dam body and to validate the current criteria.

Analysis of Piled Raft Interactions in Sand with Centrifuge Test (원심모형실험을 통한 사질토 지반에서의 말뚝지지 전면기초 상호작용 분석)

  • Park, Dong-Gyu;Choi, Kyu-Jin;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.27-40
    • /
    • 2012
  • In the design of a piled raft, the axial resistance is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, act as a key element changing resistances of the raft and group piles. In this study, a series of centrifuge model tests have been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) in sands with different relative densities. The test results revealed that the increase of settlement resistance occurs separately with settlement by group pile - soil interactions. The axial resistance of group piles (at piled raft) increases by group pile - raft (pile cap) interactions and that of raft (at piled raft) decreases by group pile - raft (pile cap) interactions.

Infinite Elements for the Evaluation of Wave Forces (파랑하중 산정을 위한 무한요소)

  • 박우선;윤정방;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 1989
  • In this paper, the concept of the infinite element is applied to the linear wave diffraction and radiation problems. The hydrodynamic pressure forces are assumed to be inertially dominated, and viscous effects are neglected. The near field region surrounding the solid body is modelled using the conventional finite elements, and the far field region is represented using the infinite elements .In order to represent the scattered wave potentials in the far field region more accurately, the infinite elements are developed using special shape functions derived from the asymptotic expressions for the analytical eigenseries solution of the scattered waves. The system matrices of the infinite elements are constructed by performing the integration in the infinite direction analytically to achieve computational efficiency. Numerical analyses are carried out for vertical axisymmetric bodies to validate the infinite elements developed here. Comparisons with the results by other available numerical solution methods show that the present method using the infinite elements gives fairly good results. Numerical experiments are per-formed to determine the suitable location of the infinite elements and the appropriate size of the finite elements which directly affect accuracy and efficiency of the solution.

  • PDF

An Experimental Study on the Temperature Difference between the Top and Bottom Flange in Steel Girder without Concrete Slab (콘크리트 슬래브가 없는 강재주형에서 상하연 온도차에 대한 실측연구)

  • Shin, Dong-Wook;Kim, Kyoung-Nam;Jung, Kyoung-Sup;Lee, Seong-Haeng
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.99-106
    • /
    • 2014
  • In order to study the reasonable design thermal loads, the steel box girder bridge specimen which have no concrete slab was manufactured with the real size dimension. The temperature data were measured for 5 month at the 18 thermo gauges which were attached according to height. The temperature differences between the top and bottom flange in steel box girder specimen were calculated and the temperature gradient models were proposed by the probabilistic method. This proposed model showed a correlation of approximately 97% when compared with the similar model of Euro Code. Thus, the temperature gradient models which were suggested in this study may be used as the basis data in calculating the design load temperature.

The Evaluation of Strength for the Corner Block Structure in the LNG Tank using Sloshing Pressure of the Scaled Tank (모형수조 슬로싱 하중을 이용한 LNG 탱크 코너블럭(Corner Block) 구조물의 구조강도 평가)

  • Park, Jun Hyeong;Park, Si Jong;Kim, Seong Hoon;Choi, Jae Min;Jun, In Ki
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.327-333
    • /
    • 2013
  • The purpose of this study is to predict sloshing pressure of a actual tank by using measured pressure in scaled down tank and to evaluate with structural strength of LNG Corner Block. For this purpose, we performed sloshing analysis about 138K class tank by using Ansys CFX program, and were measured both average pressure and maximum peak pressure according to scaled tank ratio. Also, measured pressure was converted to pressure of the actual tank by Froude scale law, and we conducted the evaluation of structural strength about the conner block of actual size KC-1.

Seismic Behavior of A 2/5-Scale Steel Structure with Added Viscoelastic Dampers (점탄성 감쇠기를 설치한 2/5 축척 강구조물의 지진하중에 의한 거동연구)

  • Oh, Soon-Taek
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.80-87
    • /
    • 1993
  • This paper summarizes an experimental and analytical study on the application of viscoelastic dampers as energy dissipation devices in structural applications. Shaking table tests are carried out on the viscoelastically damped structure and the obtained structural responses are compared to those of the inelastic analysis results for the same test structure with no dampers added. It can be concluded the viscoelastic dampers are effective in reducing excessive vibrations of structures under strong earthquake ground motions. It is also observed that the increase in structure's stiffness by the addition of dampers can not contribute to improving the seismic response of a structure. In general. the reduction of the seismic response by adding the dampers to the structure is mostly resulted from the increased damping effect. It is found that the modal strain energy method can be used to reliably predict the equivalent structural damping. and the seismic response of a viscoelastically damped structure can be accurately estimated by conventional modal analysis techniques.

  • PDF

Development of Asphalt Concrete Rutting Model by Triaxial Compression Test (삼축압축시험을 이용한 아스팔트 혼합물의 소성변형 파손모형 개발)

  • Lee, Kwan-Ho;Hyun, Seong-Cheol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • This study intends to evaluate of the characteristics of pavement deformation and develop the model for prediction model in the asphalt layer using a regression analysis. In test, there are two different asphalt binders and 5 different aggregate types. The air voids of hot mix asphalt are 6% and 10% for target value. Repeated triaxial compression test with 3 different confining pressures was used for test at 3 different test temperatures. It is going to verify the main parameters for permanent deformation of HMA and to develop the distress model. This paper is to figure out the factor affecting the pavement deformation, and then to develop model the pavement deformation for asphalt mixture. Also, the reliability of prediction model has been studied. The permanent deformation prediction model for asphalt mixtures with temperature, loading time, and air voids has been developed and the proposed permanent deformation prediction model has been validated by using the multiple regression approach which is called Statistical Package for the Social Sciences(SPSS).

Centrifugal Model Test on Stress Concentration Behaviors of Composition Ground under Flexible/Stiff Surcharge Loadings (연/강성 하중을 받는 복합지반의 응력분담거동에 대한 원심모형시험)

  • Song, MyungGeun;Bae, WooSeok;Ahn, SangRo;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.5-15
    • /
    • 2011
  • In this study, centrifuge model tests were performed to investigate stress concentration ratio, stress characteristics of soft clay ground improved by granular compaction piles with changes of piles type, loading condition and area replacement ratio. From the results of rigid loading tests, while vertical stresses acting on clay ground is similar, vertical stresses acting on GCP is larger than those acting on SCP with same replacement ratio. Also, average stress concentration ratio is increased proportionally with increasing the area replacement ratio of GCP and SCP. It was evaluated that average stress concentration ratio of soft clay ground improved by GCP is larger than that of SCP. As a result of flexible loading tests, stress concentration ratio is the highest when replacement ratio of GCP and SCP is 40%. Average stress concentration ratio of soft clay ground improved by GCP is a little more higher than is improved by SCP.

Load Carrying Capacity and Failure Mechanism of Geogrid Reinforced Stone Columns : Reduced-Scale Model Tests (지오그리드 보강 Stone Column의 파괴메카니즘 및 지지력 특성 - 축소모형실험을 통한 고찰)

  • Lee, Dae-Young;Song, Ah-Ran;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.121-129
    • /
    • 2006
  • Stone column is one of the ground improvement systems which is being used for accelerating consolidation and increasing bearing capacity for settlement sensitive structures like load embankments, bridge abutments, oil storage tanks etc. The effects of this method are enhancement of ground bearing capacity, reduction of settlement, prevention of liquefaction and prevention of lateral ground movement. Recently, geosynthetic reinforced (encased) stone column approach has been developed to improve its load carrying capacity through increasing confinement effect. Although such a concept has successfully been applied in practice, fundamentals of the method have not been fully explored. This paper presents the results of an investigation on the bearing capacity and failure mechanism of geogrid-encased stone column by model tests. The results of the analyses indicated improved bearing capacity of the geogrid reinforced stone column method over the conventional strone column method with no encasing.

A study on the bending stresses of tunnel shotcrete due to the coefficient of lateral earth pressure (측압계수의 변화에 따른 터널 숏크리트의 휨응력에 관한 연구)

  • You, Kwang-Ho;Jung, Ji-Sung;Park, Yeon-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.23-35
    • /
    • 2009
  • This study was performed to investigate the bending stresses of tunnel shotcrete as a function of the coefficient of lateral earth pressure. To perform this study, a large scale model tunnel with an one-lane horseshoe shaped road tunnel was prepared. The 3 dimensional numerical analyses were carried out to verify the results obtained from the model tests. For the loading system during the tests, 11 cylinder pressure jacks which can be controlled individually were used to simulate various loading conditions. The tests were preformed three times with three different lateral earth pressure coefficients of 0.5, 1.0 and 2.0. The bending stresses of shotcrete measured in tests were compared and analyzed with those calculated from numerical analyses. As a result, it was found that the bending compressive stresses obtained from numerical analyses were similar to those of tunnel model tests and bending tensile stresses were slightly overestimated during numerical analyses.