• Title/Summary/Keyword: 하르분류기

Search Result 8, Processing Time 0.025 seconds

Implementation of Face Mask Detection (얼굴 마스크 탐지의 구현)

  • Park, Seong Hwan;Jung, Yuchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.17-19
    • /
    • 2021
  • 본 논문에서는 코로나19 사태에 대비하여 실시간으로 마스크를 제대로 쓴 사람과 제대로 쓰지 않은 사람을 구분하는 시스템을 제안한다. 이 시스템을 사용하기 위하여 모델 학습 시에 합성곱 신경망(CNN : Convolutional Neural Networks)를 사용한다. 학습된 모델을 토대로 영상에 적용 시 하르 특징 분류기(Haar Cascade Classifier)로 얼굴을 탐지하여 마스크 여부를 판단한다.

  • PDF

Presentation control of a computer using hand motion identification rules (손동작 식별 규칙을 이용한 컴퓨터의 프레젠테이션 제어)

  • Lee, Kyu-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1172-1178
    • /
    • 2018
  • A system that control computer presentations by using the hand motion recognition and identification is proposed. The system recognizes and identifies various types of motion in hand motion, controlls the presentation without additional control devices. To recognize hand movements, it performs a face and hand region detection. Facial area is detected using Haar classifier and hand region is extracted according to skin color information on HSV color model. The face area is used to determine the beginning and end of hand gestures, the size and direction of motion. It recognizes various hand gestures and uses them to control computer presentations according to the hand motion identification rules that are proposed and set horizontal and vertical axes from the face area. It is confirmed that 97.2% recognition rate is obtained in about 1200 hand motion recognition experiments and the proposed algorithm is valid in presentation control.

Pornographic image detection using the geometry relationship of special parts of the body recognized by Haar Classifier (하르 분류기가 인식한 인체특정부분의 기하학적 관계를 이용한 음란 이미지 탐지)

  • Lee, Jung-Hwan;Kim, Hyng-jung;Won, Il-Young
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.388-390
    • /
    • 2011
  • 인터넷에서 정보의 쉬운 접근성으로 청소년들에게 무방비로 노출되어 있는 음란물을 자동으로 제어하는 연구는 다양하게 진행되고 있다. 본 연구는 음란 이미지를 자동으로 판단하는 방법에 대한 것으로, 특히 좌우로 누워있는 음란 이미지를 감지하는 방법을 제안하였다. 제안된 알고리즘의 유용성 검증을 위해 실험을 통해 분석하였다. 실험결과는 만족스러운 성능을 보여주지 않았고 몇 가지 추가적인 문제도 도출 되었다.

Presentation control of the computer using the motion identification rules (모션 식별 룰을 이용한 컴퓨터의 프레젠테이션 제어)

  • Lee, Sang-yong;Lee, Kyu-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.586-589
    • /
    • 2015
  • A computer presentation system by using hand-motion identification rules is proposed. To identify hand motions of a presenter, a face region is extracted first using haar classifier. A motion status(patterns) and position of hands is discriminated using the center of gravities of user's face and hand after segmenting the hand area on the YCbCr color model. User's hand is applied to the motion detection rules and then presentation control command is then executed. The proposed system utilizes the motion identification rules without the use of additional equipment and it is then capable of controlling the presentation and does not depend on the complexity of the background. The proposed algorithm confirmed the stable control operation via the presentation of the experiment in the dark illumination range of indoor atmosphere (lx) 15-20-30.

  • PDF

Implementation of Pedestrian Detection and Tracking with GPU at Night-time (GPU를 이용한 야간 보행자 검출과 추적 시스템 구현)

  • Choi, Beom-Joon;Yoon, Byung-Woo;Song, Jong-Kwan;Park, Jangsik
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.421-429
    • /
    • 2015
  • This paper is about an approach for pedestrian detection and tracking with infrared imagery. We used the CUDA(Computer Unified Device Architecture) that is a parallel processing language in order to improve the speed of video-based pedestrian detection and tracking. The detection phase is performed by Adaboost algorithm based on Haar-like features. Adaboost classifier is trained with datasets generated from infrared images. After detecting the pedestrian with the Adaboost classifier, we proposed a particle filter tracking strategies on HSV histogram feature that exploit adaptively at the same time. The proposed approach is implemented on an NVIDIA Jetson TK1 developer board that is full-featured device ideal for software development within the Linux environment. In this paper, we presented the results of parallel processing with the NVIDIA GPU on the CUDA development environment for detection and tracking of pedestrians. We compared the object detection and tracking processing time for night-time images on both GPU and CPU. The result showed that the detection and tracking speed of the pedestrian with GPU is approximately 6 times faster than that for CPU.

Improved Face Detection Algorithm Using Face Verification (얼굴 검증을 이용한 개선된 얼굴 검출)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1334-1339
    • /
    • 2018
  • Viola & Jones's face detection algorithm is a typical face detection algorithm and shows excellent face detection performance. However, the Viola & Jones's algorithm in images including many faces generates undetected faces and wrong detected faces, such as false faces and duplicate detected faces, due to face diversity. This paper proposes an improved face detection algorithm using a face verification algorithm that eliminates the false detected faces generated from the Viola & Jones's algorithm. The proposed face verification algorithm verifies whether the detected face is valid by evaluating its size, its skin color in the designated area, its edges generated from eyes and mouth, and its duplicate detection. In the face verification experiment of 658 face images detected by the Viola & Jones's algorithm, the proposed face verification algorithm shows that all the face images created in the real person are verified.

Implementation of User Gesture Recognition System for manipulating a Floating Hologram Character (플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템 구현)

  • Jang, Myeong-Soo;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.143-149
    • /
    • 2019
  • Floating holograms are technologies that provide rich 3D stereoscopic images in a wide space such as advertisement, concert. In addition, It is possible to reduce the 3D glasses inconvenience, eye strain, and space distortion, and to enjoy 3D images with excellent realism and existence. Therefore, this paper implements a user gesture recognition system for manipulating a floating hologram characters that can be used in a small space devices. The proposed method detects face region using haar feature-based cascade classifier, and recognizes the user gestures using a user gesture-occurred position information that is acquired from the gesture difference image in real time. And Each classified gesture information is mapped to the character motion in floating hologram for manipulating a character action. In order to evaluate the performance of the proposed user gesture recognition system for manipulating a floating hologram character, we make the floating hologram display devise, and measures the recognition rate of each gesture repeatedly that includes body shaking, walking, hand shaking, and jumping. As a results, the average recognition rate was 88%.

Development of a Face Detection and Recognition System Using a RaspberryPi (라즈베리파이를 이용한 얼굴검출 및 인식 시스템 개발)

  • Kim, Kang-Chul;Wei, Hai-tong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.859-864
    • /
    • 2017
  • IoT is a new emerging technology to lead the $4^{th}$ industry renovation and has been widely used in industry and home to increase the quality of human being. In this paper, IoT based face detection and recognition system for a smart elevator is developed. Haar cascade classifier is used in a face detection system and a proposed PCA algorithm written in Python in the face recognition system is implemented to reduce the execution time and calculates the eigenfaces. SVM or Euclidean metric is used to recognize the faces detected in the face detection system. The proposed system runs on RaspberryPi 3. 200 sample images in ORL face database are used for training and 200 samples for testing. The simulation results show that the recognition rate is over 93% for PP+EU and over 96% for PP+SVM. The execution times of the proposed PCA and the conventional PCA are 0.11sec and 1.1sec respectively, so the proposed PCA is much faster than the conventional one. The proposed system can be suitable for an elevator monitoring system, real time home security system, etc.