DOI QR코드

DOI QR Code

Presentation control of a computer using hand motion identification rules

손동작 식별 규칙을 이용한 컴퓨터의 프레젠테이션 제어

  • Lee, Kyu-Won (Department of Electronics and Communications Engineering, Daejeon University)
  • Received : 2018.07.09
  • Accepted : 2018.08.30
  • Published : 2018.09.30

Abstract

A system that control computer presentations by using the hand motion recognition and identification is proposed. The system recognizes and identifies various types of motion in hand motion, controlls the presentation without additional control devices. To recognize hand movements, it performs a face and hand region detection. Facial area is detected using Haar classifier and hand region is extracted according to skin color information on HSV color model. The face area is used to determine the beginning and end of hand gestures, the size and direction of motion. It recognizes various hand gestures and uses them to control computer presentations according to the hand motion identification rules that are proposed and set horizontal and vertical axes from the face area. It is confirmed that 97.2% recognition rate is obtained in about 1200 hand motion recognition experiments and the proposed algorithm is valid in presentation control.

손동작 인식을 통하여 컴퓨터 프레젠테이션을 제어하는 시스템을 제안한다. 제안하는 시스템은 손 동작의 다양한 운동 형태를 인식, 구분함으로써 부가적인 제어용 장치 없이 프레젠테이션을 제어한다. 손동작의 인식을 위하여 얼굴영역 검출과 손영역 검출을 시행한다. 하르분류기(Haar classifier)를 이용하여 얼굴영역을 검출하며, HSV 컬러모델상에서 피부 색상 정보에 따라 손영역을 검출한다. 얼굴 영역은 손동작의 시작과 끝, 동작의 크기 및 방향을 판단하는 기준으로 삼는다. 얼굴 영역으로부터 가로, 세로 중심축을 설정하고 제안하는 모션 식별룰에 따라 다양한 손동작을 인식하고 컴퓨터 제어에 이용한다. 약 1200회의 동작 인식 실험에서 97.2%의 인식률을 얻어 제안하는 알고리즘이 유효함을 확인하였다.

Keywords

References

  1. B. J. Kim, M. H. Tak, J. Jung and S. H. Park, "A Method of Interaction with AR Object Using Hand Gesture and Arm Movement Recognition in Augmented Reality Advertising," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol.7, no.6, pp. 817-826, June 2017.
  2. M. S. Chang, S. D. Kwak and S. M. Kang, "Presentation Control System using Gesture Recognition and Sensor," Journal of Fuzzy Logic and Intelligent Systems, vol. 21, no. 4, pp. 481-486, Aug. 2011.
  3. M. H. Huh and H. M. Park "Visualizing SVM Classification in Reduced Dimensions," Communications for Statistical Applications and Methods, vol. 16, no. 5, pp. 881-889, Sep. 2009. https://doi.org/10.5351/CKSS.2009.16.5.881
  4. Y. K. Park, H. J. Seo, K. W. Min and J. K. Kim, "A Real-Time Face Detection/Tracking Methodology Using Haar-wavelets and Skin Color," Journal(B) of Korea Information Processing Society, vol. 13, no. 3, pp. 283-294, Jun. 2006.
  5. S. J. Hwang, H. Y. Ko and J. H. Baek, "AdaBoost-based Gesture Recognition Using Time Interval Window Applied Global and Local Feature Vectors with Mono Camera," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 3, pp. 471-479, Mar. 2018. https://doi.org/10.6109/JKIICE.2018.22.3.471
  6. W. Xu. and E. J. Lee, "A Novel Multi-view Face Detection Method Based on Improved Real Adaboost Algorithm," Korean Society for Internet Information Transactions on Internet and Information Systems, vol. 7, no. 11, pp. 2720-2736, Nov. 2013. https://doi.org/10.3837/tiis.2013.11.010
  7. D. Lee, D. Shin and D. Shin, "A Finger Counting Method for Gesture Recognition," Journal of Korean Society for Internet Information, vol. 17, no. 2, pp. 29-37, Apr. 2016.