• 제목/요약/키워드: 하르분류기

검색결과 8건 처리시간 0.018초

얼굴 마스크 탐지의 구현 (Implementation of Face Mask Detection)

  • 박성환;정유철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.17-19
    • /
    • 2021
  • 본 논문에서는 코로나19 사태에 대비하여 실시간으로 마스크를 제대로 쓴 사람과 제대로 쓰지 않은 사람을 구분하는 시스템을 제안한다. 이 시스템을 사용하기 위하여 모델 학습 시에 합성곱 신경망(CNN : Convolutional Neural Networks)를 사용한다. 학습된 모델을 토대로 영상에 적용 시 하르 특징 분류기(Haar Cascade Classifier)로 얼굴을 탐지하여 마스크 여부를 판단한다.

  • PDF

손동작 식별 규칙을 이용한 컴퓨터의 프레젠테이션 제어 (Presentation control of a computer using hand motion identification rules)

  • 이규원
    • 한국정보통신학회논문지
    • /
    • 제22권9호
    • /
    • pp.1172-1178
    • /
    • 2018
  • 손동작 인식을 통하여 컴퓨터 프레젠테이션을 제어하는 시스템을 제안한다. 제안하는 시스템은 손 동작의 다양한 운동 형태를 인식, 구분함으로써 부가적인 제어용 장치 없이 프레젠테이션을 제어한다. 손동작의 인식을 위하여 얼굴영역 검출과 손영역 검출을 시행한다. 하르분류기(Haar classifier)를 이용하여 얼굴영역을 검출하며, HSV 컬러모델상에서 피부 색상 정보에 따라 손영역을 검출한다. 얼굴 영역은 손동작의 시작과 끝, 동작의 크기 및 방향을 판단하는 기준으로 삼는다. 얼굴 영역으로부터 가로, 세로 중심축을 설정하고 제안하는 모션 식별룰에 따라 다양한 손동작을 인식하고 컴퓨터 제어에 이용한다. 약 1200회의 동작 인식 실험에서 97.2%의 인식률을 얻어 제안하는 알고리즘이 유효함을 확인하였다.

하르 분류기가 인식한 인체특정부분의 기하학적 관계를 이용한 음란 이미지 탐지 (Pornographic image detection using the geometry relationship of special parts of the body recognized by Haar Classifier)

  • 이정환;김현정;원일용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.388-390
    • /
    • 2011
  • 인터넷에서 정보의 쉬운 접근성으로 청소년들에게 무방비로 노출되어 있는 음란물을 자동으로 제어하는 연구는 다양하게 진행되고 있다. 본 연구는 음란 이미지를 자동으로 판단하는 방법에 대한 것으로, 특히 좌우로 누워있는 음란 이미지를 감지하는 방법을 제안하였다. 제안된 알고리즘의 유용성 검증을 위해 실험을 통해 분석하였다. 실험결과는 만족스러운 성능을 보여주지 않았고 몇 가지 추가적인 문제도 도출 되었다.

모션 식별 룰을 이용한 컴퓨터의 프레젠테이션 제어 (Presentation control of the computer using the motion identification rules)

  • 이상용;이규원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.586-589
    • /
    • 2015
  • 손동작 식별 룰을 통한 컴퓨터의 프레젠테이션 제어 시스템을 제안한다. 발표자의 손 동작 식별을 위해 (일반적인 웹캠을 사용하여) 이미지를 입력받아 하르 분류기를 이용하여 사용자의 얼굴영역을 추출한다. YCbCr 컬러모델을 이용하여 손 영역을 추출한 후에 사용자의 얼굴과 손의 무게중심을 이용하여 손의 현재 움직임 상태와 위치를 판별 하였다. 사용자의 손이 모션 감지 룰에 적용되어 프레젠테이션 제어 명령이 실행된다. 제안하는 시스템은 모션 식별 룰을 이용하여 부가적인 기기를 사용하지 않고 배경의 복잡도에 독립적인 프레젠테이션을 제어가 가능한 시스템이다. 실험은 어두운 실내 분위기인 조도범위(lx) 15-20-30에서 프레젠테이션 실험을 통해 안정적인 제어동작을 확인하였다.

  • PDF

GPU를 이용한 야간 보행자 검출과 추적 시스템 구현 (Implementation of Pedestrian Detection and Tracking with GPU at Night-time)

  • 최범준;윤병우;송종관;박장식
    • 방송공학회논문지
    • /
    • 제20권3호
    • /
    • pp.421-429
    • /
    • 2015
  • 이 논문은 적외선 영상을 이용하여 보행자를 검출하고 추적하는 방법에 관한 것이다. 영상기반 보행 검출 및 추적 처리 속도를 개선하기 위하여 병렬처리언어인 CUDA(Computer Unified Device Architecture)를 활용한다. 보행자 검출은 하르 유사 특징을 기반으로 Adaboost 알고리즘을 적용한다. Adaboost 분류는 적외선 영상으로 제작한 데이터셋을 이용하여 훈련한다. Adaboost 분류기로 보행자를 검출한 후, HSV 히스토그램을 특징점으로 파티클 필터를 이용하여 보행자를 추적하는 방법을 제안한다. 제안하는 검출 및 추적 방법을 Linux 환경에서 소프트웨어를 개발할 수 있는 NVIDIA의 Jetson TK1 개발보드 상에 구현하였다. 이 논문에서는 보행자 검출 및 추적을 CUDA 개발환경인 GPU를 이용하여 병렬처리한 결과를 나타내었다. GPU를 이용한 보행자 검출과 추적 처리 속도가 CPU 처리속도에 비하여 약 6 배 빠른 것을 확인할 수 있다.

얼굴 검증을 이용한 개선된 얼굴 검출 (Improved Face Detection Algorithm Using Face Verification)

  • 오정수
    • 한국정보통신학회논문지
    • /
    • 제22권10호
    • /
    • pp.1334-1339
    • /
    • 2018
  • Viola & Jones의 얼굴 검출 알고리즘은 대표적인 얼굴 검출 알고리즘으로 매우 우수한 얼굴 검출 성능을 보인다. 그러나 많은 얼굴을 포함하는 영상들을 대상으로 한 Viola & Jones 알고리즘은 얼굴의 다양성으로 미검출 얼굴들, 가짜 얼굴들과 중복 검출된 얼굴들 같은 잘못 검출된 얼굴들을 발생시킨다. 본 논문은 Viola & Jones 알고리즘에서 생성된 잘못 검출된 얼굴들을 제거하는 얼굴 검증 알고리즘을 이용한 개선된 얼굴 검출 알고리즘을 제안한다. 제안된 얼굴 검증 알고리즘은 검출된 얼굴들에 대한 크기, 지정된 영역의 피부색, 눈과 입에서 발생된 에지, 중복 검출을 평가하여 얼굴이 유효한지를 확인한다. Viola & Jones 알고리즘에 의해 검출된 658개의 얼굴 영상들을 대상으로 한 얼굴 검증 실험에서 제안된 얼굴 검증 알고리즘은 실제 사람들에 의해 생성된 모든 얼굴 영상들을 검증하는 것을 보여준다.

플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템 구현 (Implementation of User Gesture Recognition System for manipulating a Floating Hologram Character)

  • 장명수;이우범
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.143-149
    • /
    • 2019
  • 플로팅 홀로그램은 광고나 콘서트와 같이 넓은 공간에서 현장감과 실존감이 뛰어난 3D 입체영상을 제공하면서, 3D 안경의 불편함, 시각적 피로, 공간 왜곡 현상 발생을 감소할 수 있는 기술이다. 따라서 본 논문은 좁은 공간에서도 사용가능한 플로팅 홀로그램 환경에서 캐릭터 조작을 위한 사용자 제스처 인식 시스템을 구현한다. 제안된 방법은 하르 특징기반의 캐시케이드((Harr feature-based cascade classifier) 분류기를 이용하여 얼굴 영역을 검출하고, 검출된 얼굴 영역을 기준으로 실시간으로 체스쳐 차영상으로부터 사용자 제스쳐의 발생 위치 정보를 이용하여 사용자 제스쳐를 인식한다. 그리고 각각 인식된 제스쳐 정보는 플로팅 홀로그램 환경에서 생성된 캐릭터 움직임을 조작하기 위하여 상응하는 행위에 맵핑된다. 제안된 플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템의 성능평가를 위해서는 플로팅 홀로그램 디스플레이 장치를 제작하고, 몸 흔들기, 걷기, 손 흔들기, 점프 등의 각 제스처에 따른 인식률을 반복 측정한 결과 평균 88%의 인식률을 보였다.

라즈베리파이를 이용한 얼굴검출 및 인식 시스템 개발 (Development of a Face Detection and Recognition System Using a RaspberryPi)

  • 김강철
    • 한국전자통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.859-864
    • /
    • 2017
  • 사물인터넷이 4차 산업혁명을 주도할 새로운 기술로 각광받고 있으며, 이미 많은 기술과 제품들이 발표되어 인간의 삶의 질을 높이는 데 많은 기여를 하고 있다. 본 논문에서는 건물의 엘리베이터 등에서 얼굴 검출 및 얼굴 인식에 사용할 수 있는 시스템을 개발한다. 얼굴 검출 시스템은 하르 직렬 분류기를 사용하며, 얼굴 인식 시스템에는 수행 시간을 줄이기 위하여 본 논문에서 파이썬 언어로 구현된 주성분 분석(PCA)이 얼굴 인식을 위한 고유 얼굴(eigenface) 계산에 사용된다. 데이터베이스에 저장된 얼굴과 얼굴 검출 시스템의 결과로부터 얼굴을 인식하기 위하여 SVM 또는 유크리디안 측정이 사용된다. 제안된 시스템은 OpenCV를 사용하여 라즈베리파이 3에 구현된다. 본 논문에서 구현된 주성분 프로그램의 성능을 구하기 위하여 기존의 주성분 프로그램과 비교하여 얼굴 인식율과 수행시간을 비교하였다. 성능 평가를 위하여 ORL 얼굴 데이터베이스에서 40명의 얼굴에 대하여 각각 10 개의 이미지를 이용하여 학습에 200, 테스트에 200개의 이미지를 사용하였다. 본 논문에서 제안된 PCA와 유클리디안 측정을 이용한 경우 약 93%, SVM의 경우 약 96% 이상의 얼굴 인식률을 얻었다. 그러나 수행시간은 본 논문에서 구현된 PCA를 사용할 경우 약 0.11초, 기존 PCA의 경우 약 1.1초로 약 1/10로 수행 시간을 줄일 수 있었다. 그러므로 본 논문에서 개발된 시스템은 실시간 결과가 필요한 보안 시스템, 엘리베이터 모니터링 시스템 등에 적용할 수 있을 것으로 기대된다.