• Title/Summary/Keyword: 피치

Search Result 1,322, Processing Time 0.026 seconds

Synthesization and Characterization of Pitch-based Activated Carbon Fiber for Indoor Radon Removal (실내 라돈가스 제거를 위한 Pitch계 활성탄소섬유 제조 및 특성연구)

  • Gwak, Dae-Cheol;Choi, Sang-Sun;Lee, Joon-Huyk;Lee, Soon-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.207-218
    • /
    • 2017
  • In this study, pitch-based activated carbon fibers (ACFs) were modified with pyrolysis fuel oil (PFO). Carbonized ACF samples were activated at $850^{\circ}C$, $880^{\circ}C$ and $900^{\circ}C$. A scanning electron microscope (SEM) and a BET surface area apparatus were employed to evaluate the indoor radon removal of each sample. Among three samples, the BET surface area and micropore area of ACF880 recorded the highest value with $1,420m^2{\cdot}g^{-1}$ and $1,270m^2{\cdot}g^{-1}$. Moreover, ACF880 had the lowest external surface area and BJH adsorption cumulative surface area of pores with $151m^2{\cdot}g^{-1}$ and $35.5m^2{\cdot}g^{-1}$. This indicates that satisfactory surface area depends on the appropriate temperature. With the above scope, ACF880 also achieved the highest radon absorption rate and speed in comparison to other samples. Therefore, we suggest that the optimum activation temperature for PFO containing ACFs is $880^{\circ}C$ for effective indoor radon adsorption.

Interconnection Process and Electrical Properties of the Interconnection Joints for 3D Stack Package with $75{\mu}m$ Cu Via ($75{\mu}m$ Cu via가 형성된 3D 스택 패키지용 interconnection 공정 및 접합부의 전기적 특성)

  • Lee Kwang-Yong;Oh Teck-Su;Won Hye-Jin;Lee Jae-Ho;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.111-119
    • /
    • 2005
  • Stack specimen with three dimensional interconnection structure through Cu via of $75{\mu}m$ diameter, $90{\mu}m$ height and $150{\mu}m$ pitch was successfully fabricated using subsequent processes of via hole formation with Deep RIE (reactive ion etching), Cu via filling with pulse-reverse electroplating, Si thinning with CMP, photolithography, metal film sputtering, Cu/Sn bump formation, and flip chip bonding. Contact resistance of Cu/Sn bump and Cu via resistance could be determined ken the slope of the daisy chain resistance vs the number of bump joints of the flip chip specimen containing Cu via. When flip- chip bonded at $270^{\circ}C$ for 2 minutes, the contact resistance of the Cu/Sn bump joints of $100{\times}100{\mu}m$ size was 6.7m$\Omega$ and the Cu via resistance of $75{\mu}m$ diameter, $90{\mu}m$ height was 2.3m$\Omega$.

  • PDF

Towards 3D Modeling of Buildings using Mobile Augmented Reality and Aerial Photographs (모바일 증강 현실 및 항공사진을 이용한 건물의 3차원 모델링)

  • Kim, Se-Hwan;Ventura, Jonathan;Chang, Jae-Sik;Lee, Tae-Hee;Hollerer, Tobias
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.84-91
    • /
    • 2009
  • This paper presents an online partial 3D modeling methodology that uses a mobile augmented reality system and aerial photographs, and a tracking methodology that compares the 3D model with a video image. Instead of relying on models which are created in advance, the system generates a 3D model for a real building on the fly by combining frontal and aerial views. A user's initial pose is estimated using an aerial photograph, which is retrieved from a database according to the user's GPS coordinates, and an inertial sensor which measures pitch. We detect edges of the rooftop based on Graph cut, and find edges and a corner of the bottom by minimizing the proposed cost function. To track the user's position and orientation in real-time, feature-based tracking is carried out based on salient points on the edges and the sides of a building the user is keeping in view. We implemented camera pose estimators using both a least squares estimator and an unscented Kalman filter (UKF). We evaluated the speed and accuracy of both approaches, and we demonstrated the usefulness of our computations as important building blocks for an Anywhere Augmentation scenario.

A Study on Smart Factory System Design for Screw Machining Management (나사 가공 관리를 위한 스마트팩토리 시스템 설계에 관한 연구)

  • Lee, Eun-Kyu;Kim, Dong-Wan;Lee, Sang-Wan;Kim, Jae-joong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.329-331
    • /
    • 2018
  • In this paper, we propose a monitoring system that starts with the supply of raw materials for threading, is processed into a lathe machine, and checks for defects of the product are automatically performed by the robot with Smart Factory technology through assembly and disassembly. Completion check according to the production instruction quantity and production instruction is made by checking the production status according to whether or not the raw material is worn by the displacement sensor, and checking the pitch and the contour of the processed female and male to determine OK and NG. The robotic system acts as a relay for loading and unloading of raw materials, pallet transfer, and overall process, and it acts as an intermediary for organically driving. The location information of the threaded products is collected by using the non-contact wireless tag and the energy saving system Production efficiency and utilization rate were checked. The environmental sensor collects the air-conditioning environment data (temperature, humidity), measures the temperature and humidity accurately, and checks the quality of product processing. It monitors and monitors the driving hazard level environment (overheating, humidity) of the product. Controls for CNC and robot module PLC as a heterogeneous system.

  • PDF

Singing Voice Synthesis Using HMM Based TTS and MusicXML (HMM 기반 TTS와 MusicXML을 이용한 노래음 합성)

  • Khan, Najeeb Ullah;Lee, Jung-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.53-63
    • /
    • 2015
  • Singing voice synthesis is the generation of a song using a computer given its lyrics and musical notes. Hidden Markov models (HMM) have been proved to be the models of choice for text to speech synthesis. HMMs have also been used for singing voice synthesis research, however, a huge database is needed for the training of HMMs for singing voice synthesis. And commercially available singing voice synthesis systems which use the piano roll music notation, needs to adopt the easy to read standard music notation which make it suitable for singing learning applications. To overcome this problem, we use a speech database for training context dependent HMMs, to be used for singing voice synthesis. Pitch and duration control methods have been devised to modify the parameters of the HMMs trained on speech, to be used as the synthesis units for the singing voice. This work describes a singing voice synthesis system which uses a MusicXML based music score editor as the front-end interface for entry of the notes and lyrics to be synthesized and a hidden Markov model based text to speech synthesis system as the back-end synthesizer. A perceptual test shows the feasibility of our proposed system.

Current Sensing Trench Gate Power MOSFET for Motor Driver Applications (모터구동 회로 응용을 위한 대전력 전류 센싱 트렌치 게이트 MOSFET)

  • Kim, Sang-Gi;Park, Hoon-Soo;Won, Jong-Il;Koo, Jin-Gun;Roh, Tae-Moon;Yang, Yil-Suk;Park, Jong-Moon
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.220-225
    • /
    • 2016
  • In this paer, low on-resistance and high-power trench gate MOSFET (Metal-Oxide-Silicon Field Effect Transistor) incorporating current sensing FET (Field Effect Transistor) is proposed and evaluated. The trench gate power MOSFET was fabricated with $0.6{\mu}m$ trench width and $3.0{\mu}m$ cell pitch. Compared with the main switching MOSFET, the on-chip current sensing FET has the same device structure and geometry. In order to improve cell density and device reliability, self-aligned trench etching and hydrogen annealing techniques were performed. Moreover, maintaining low threshold voltage and simultaneously improving gate oxide relialility, the stacked gate oxide structure combining thermal and CVD (chemical vapor deposition) oxides was adopted. The on-resistance and breakdown voltage of the high density trench gate device were evaluated $24m{\Omega}$ and 100 V, respectively. The measured current sensing ratio and it's variation depending on the gate voltage were approximately 70:1 and less than 5.6 %.

Thermal and Optical Properties of Cellobiose Octa(cholesteryloxycarbonyl)alkanoates (셀로비오스 옥타(콜레스테릴옥시카보닐)알카노에이트의 열 및 광학 특성)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.230-238
    • /
    • 2008
  • The thermal and optical properties of cellobiose octa(cholestryloxycarbonyl)alkanoates CCCBn, $n=2{\sim}8$,10, the number of methylene units in the spacer) were investigated. All the samples formed monotropic cholesteric phases with left-handed helical structures. CCBn with n=2 or 10, in contrast with CCBn with $3{\leq}n{\leq}8$, did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cholesteryl group highly depends on the length of the spacer connecting the cholesteryl group to the cellobiose chain. The isotropic-cholestropic transition ($T_{ic}$) and glass transition temperatures decreased with increasing n and showed no odd-even effect. The transition entropy at $T_{ic}$ increased with increasing n from 2 up 6, but at n=7 it drops significantly and then increased again with increasing n from 8 to 10. The sharp change at n=7 may be attributed to a difference in arrangement of the side groups. The thermal stability and degree of order in the mesophase and the temperature dependence of the optical pitch observed for CCBn were significantly different from those reported for the cellulose tri(cholesteryloxycarbonyl)alkanoates and glucose penta(cholesteryloxycarbonyl)alkanoates. The results were discussed in terms of the differences in the degree of polymerization, the number of the mesogenic units per mole-glucose unit, and the conformation of the molecules.

A Predictive Model for the Number of Potholes Using Basic Harmony Search Algorithm (하모니 검색 알고리즘을 이용한 포트홀 발생 개수 예측 모형)

  • Kim, Dowan;Lee, Sangyum;Kim, Dongho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.150-158
    • /
    • 2014
  • A bunch of asphalt roads have been damaged frequently in relation to the rapid climate change. To solve and prevent this type of problems, many nationalities in the world have performed various researches. In this regard, the objective of this study is to develop prediction model as to the number of potholes occurred in seoul. At the same time, we have utilized empirical and statistical approaches in order for us to identify factors which is affecting the actual occurrence. The predictive model was determinded by using BHS (Basic Harmony Search) algorithm. Prediction was based on the weather and traffic data as well as data occurrence data of porthole. To assess the influences which are PAR(Pitch Adjusting Rate) and HMCR(Harmony Memory Considering Rate), we determined suitability by changing the values. In the process of the determining a predictive model, the predictive model composed Training data (2011, 2012 and 2013yrs data). To determine the suitability of the model, we have utilized Testing Set (2009 and 2010 yrs data). The suitability of the basic prediction model has been from RMSE(Root Mean Squared Error), MAE(Mean Absolute Error) and Coefficient of determination.

Flip Chip Process for RF Packages Using Joint Structures of Cu and Sn Bumps (Cu 범프와 Sn 범프의 접속구조를 이용한 RF 패키지용 플립칩 공정)

  • Choi, J.Y.;Kim, M.Y.;Lim, S.K.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.67-73
    • /
    • 2009
  • Compared to the chip-bonding process utilizing solder bumps, flip chip process using Cu pillar bumps can accomplish fine-pitch interconnection without compromising stand-off height. Cu pillar bump technology is one of the most promising chip-mounting process for RF packages where large gap between a chip and a substrate is required in order to suppress the parasitic capacitance. In this study, Cu pillar bumps and Sn bumps were electroplated on a chip and a substrate, respectively, and were flip-chip bonded together. Contact resistance and chip shear force of the Cu pillar bump joints were measured with variation of the electroplated Sn-bump height. With increasing the Sn-bump height from 5 ${\mu}m$ to 30 ${\mu}m$, the contact resistance was improved from 31.7 $m{\Omega}$ to 13.8 $m{\Omega}$ and the chip shear force increased from 3.8 N to 6.8 N. On the contrary, the aspect ratio of the Cu pillar bump joint decreased from 1.3 to 0.9. Based on the variation behaviors of the contact resistance, the chip shear force, and the aspect ratio, the optimum height of the electroplated Sn bump could be thought as 20 ${\mu}m$.

  • PDF

Underfill Flow Characteristics for Flip-Chip Packaging (플립칩 패키징 언더필 유동특성에 관한 연구)

  • Song, Yong;Lee, Sun-Beung;Jeon, Sung-Ho;Yim, Byung-Seung;Chung, Hyun-Seok;Kim, Jong-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.39-43
    • /
    • 2009
  • In this paper, the flow characteristics of underfill material driven by capillary action between flip-chip and substrate were investigated. Also, the effects of viscosity level and dispensing point of underfill on flow characteristics were investigated. Flip chip package size was $5mm{\times}5mm{\times}0.65^tmm$, the diameter of solder bump was 100 ${\mu}m$, and the pitch was 150 ${\mu}m$. It was full grid area-array type with 1024 I/Os. The glass substrate was used and the gap between the chip and substrate was 50 ${\mu}m$. For the experimental study, three different underfills with different viscous properties($2000{\sim}3700$ cps), and two different types of dispensing methods(center dot and edge dot) were used. The flow characteristics and filling time of underfill were investigated by using CCD camera. The results show that the edge flow was faster than center flow due to the edge effect, which was caused by the resistance of solder bumps. In case of edge dot dispensing type, the filling time was faster due to the large edge effect, compared to center dot dispensing type. Also, it was found that the underfill flow was faster and the filling time decreased as the viscosity level of underfill was decreased.

  • PDF