• Title/Summary/Keyword: 피난 안전성

Search Result 250, Processing Time 0.02 seconds

Evaluation of Lateral Load Resistance and Heating/Cooling/Lighting Energy Performance of a Post-disaster Refugees Housing Using Lightweight composite Panels (경량 복합패널을 활용한 구호주거의 횡하중 저항성능 및 냉난방조명 에너지성능 평가)

  • Hwang, Moon-Young;Lee, Byung-Yun;Kang, Su-Min;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.252-262
    • /
    • 2019
  • Following the earthquake in Gyeongju (2016) and Pohang (2017), South Korea is no longer a safe place for earthquakes. Accordingly, the need for shelters suitable for disaster environments is increasing. In this study, a lightweight composite panel was used to produce post-disaster housing for refugees to compensate for the disadvantages of existing evacuation facilities. For this purpose, an evaluation of structural performance and thermal environment for post-disaster housing for refugees composed of lightweight composite panels was performed. To assess the structural performance, a lateral loading test was conducted on a system made of lightweight composite panels. The specimens consisted of two types, which differed according to the bonding method, as a variable. In addition, the seismic and wind loads were calculated in accordance with KBC 2016 and compared with the experimental results. Regarding the energy performance, optimization of south-facing window planning and window-wall ratio and solar heat gain coefficient were analyzed to minimize heating, cooling, and lighting energy. As a result, the specimens composed of lightweight composite panels will perform sufficiently safely for lateral loads and the optimized window planning will lead to a low-energy operation.

A Study on Plan for Introduction of Fire Influence Evaluation System through Risk Assessment of the Urban Lifestyle Housing Buildings (도시형 생활주택의 위험성 분석을 통한 화재영향성평가제도의 도입방안에 관한 연구)

  • Kim, Dong-Wook;Baek, Sona;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • Securing fire safety using only fire-fighting facilities is difficult because causes of modern fire vary, such as architectural structures and building use patterns. In order for fire safety to be guaranteed by enacting and revising fire regulations reflecting the fire hazard characteristics and user's characteristics, the introduction of fire influence evaluation (fire risk assessment) system needs to be considered in a timely manner to be adopted but unfortunately two attempts before have failed. In this study, a fire case of urban lifestyle housing was surveyed to introduce a fire influence evaluation system and a field survey on the actual condition of the 414 urban lifestyle housing buildings and fire & evacuation simulation results of one representative building in Suyoung-gu and Nam-gu District of Busan Metropolitan City were analyzed. The necessity, procedures and implementation method of fire influence evaluation system were questioned and tested by the professional fire experts, fire officers and firefighters and architects. On the basis of these facts, introduction of (fire influence evaluation system) should be absolutely adopted and the fire department and fire regulation are eligible to implement the system. Therefore, fire regulation needs to be enacted or revised in accordance with the new fire environment and fire safety system that needs to be built up. Accordingly, aggressive promotion through public hearings on the necessity of fire impact assessments, consensus among departments and fostering experts to carry out fire influence evaluation system will be the core.

A Study on the Barrier-Free Space through IPA Method for the Elderly in Multi-family Housing (IPA 분석기법을 통한 공동주택의 무장애공간 인증기준 적합성 분석연구)

  • Kim, Ju-Whan;Kim, Won-Pil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.187-194
    • /
    • 2020
  • When a human being grew older, followed by visually and perceptually impaired, and dementia, it jeopardizes safety and life unless supportive design is secured for a living environment. This supportive space is based on universal design concept which offers safe-oriented, and simple use by incorporating gender and physical/mental limitation. The study of purppose was to examine the appropriateness of barrier-free standard for seniors' living in apartment through IPA. Chi-square analysis found that satisfaction with BF space is lowered as aging is continued and for female group. Regression analysis indicated that sink was the prime predictor in satisfaction, and stair/elevator was the most important variable. IPA concluded that sink, bath, shower/locker and alert/egress were prime BF indexes to be improved among 14 elements, implying careful design in sanitation area for seniors.

The Study of a Correlation between Heat Release and Smoke Production by Using Oxygen Consumption Calorimeter Up to 10 MW Facility (10MW급 까지의 산소소모율법 칼로리미터를 활용한 열방출률과 연기발생률의 상관성에 관한 연구)

  • Ryu, Sang-Hoon;Yoo, Yong-Ho;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.58-65
    • /
    • 2010
  • The fire accidents having recently occurred are getting more and more larger and causing lots of damage in terms of property loss and casualties increase, so there is in need of technical fire safety development like comprehensive prevention solution in order to effectively prevent. Especially, the needing of new paradigm for advanced fire safe technology is gathering strength in high-rise modern building construction. Therefore, we want to find out on this paper what is a correlation between heat release rate measurement and smoke release volume by three parts of oxygen consumption calorimeter in bench scale calorimeter (cone calorimeter/ISO 5660/Avg.500Kw), Medium scale calorimeter (Room corner tester, Single burning Item/ISO 9750, EN 13823/Avg.3MW), and large scale calorimeter (Industry calorimeter/Avg. 10MW). Thus, Smoke detective of new paradigm devised by making use of a correlation between heat release and smoke production is to help reduce loss property and casualties. Ultimately, based on this theory, a new concept of fire alarm and evacuation system will be developed and expected to apply to a skyscraper.

The Effects of Apartment Facility Maintenance on the Residential Satisfaction of Residents (아파트 시설물 유지관리가 입주자의 주거만족도에 미치는 영향)

  • Kim, Myung-Hee;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.175-183
    • /
    • 2020
  • This study suggests a solution regarding the effects of apartment facility maintenance and fire safety facility maintenance on the residential satisfaction of residents. The results are as follows. Firstly, facility maintenance had a negative effect on residential satisfaction. Analysis revealed that residential satisfaction decreased the more breakdowns there were in the facilities. This revealed that when maintenance staff neglect the residents' complaints due to the repetitive aspect of their jobs, there was a negative effect on residential satisfaction; therefore, residential satisfaction must be increased by maintaining the facilities well and training support for maintenance staff. Secondly, fire safety facilities had a negative effect on residential satisfaction. Analysis revealed that residential satisfaction decreased the more malfunctions there were in the fire safety facilities and the more replacements there were in fire fighting equipment. This revealed the importance of safety and the fact that the apartment heavily relies on fire safety facilities because there may be a low awareness regarding safety; therefore, maintenance staff must lower the damage from fire safety facilities and to increase the residential satisafaction of residents. Lastly, there needs to be repetitive training and education for residents regarding fire fighting and evacuating in accordance with the fire fighting plan as a means to strengthen residents' safety awareness.

Investigation on Users' Perception and Certification Status and Donning of Smoke Masks (방연마스크에 대한 사용자 인식, 인증 현황 및 착용성 조사)

  • Hyunwoo Son;Yeongeun Park;Eungwoo Lee;Eunji Kim;Youngbo Choi
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.68-73
    • /
    • 2023
  • Smoke masks have attracted great interests and have been supplied widely for the improvement of the safety during fire evacuation. However, there is not sufficient research on the practical utility, certification status and easy-donning about commercial smoke masks, therefore it is difficult to determine the actual usefulness of the smoke masks. In this study, we conducted a survey on users' perceptions and experiences about the smoke masks, and investigated the status of certification of 54 commercial smoke masks. We also performed donning tests and examined degrees of discomfort for 4 types of the smoke masks. Although 22% of 235 respondents had experienced the smoke masks before the test, and 23% of the respondents did not know the smoke masks, 93% of the respondents expected that the smoke masks could protect users from fire smokes and toxic gases. It was found that 41% of the commercial smoke masks did not certify according to domestic or overseas performance standards. Most certification standards have not effectively regulated maximum wearing time for the smoke masks. Only ASTM E 2952 and KFIS 024 had specific standards for the maximum wearing time of 30 s. As a result of donning tests for 4 types of smoke masks, the wearing time of the hood-type mask and self-contained smoke mask exceeded 30 s, therefore these types of smoke masks might increase the required safe evacuation time. On the other hand, it was also found that short education about the donning could reduce the wearing time by 19% and numbers of improper wearing by 89%.

Evaluation on th e Wear Fit and Activity of Emergency Escape Breathing Devices for Ship Accidents (선박사고용 호흡구난장비의 착용성 및 활동성 평가 연구)

  • Noh, Jae-Hyeon;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.79-84
    • /
    • 2019
  • The use of emergency escape breathing devices (EEBD) is strongly required to protect against toxic gas or flooding caused by ship fires or accidents. Recently developed domestic EEBD products only satisfy the basic performance requirements, but no wear fit and activity performance evaluation has been done for real usage. In this study, the global level test requirements for wear comfort and activity of EEBDs were developed and the open and closed type of domestic EEBD products were evaluated. Poor visibility, longer wear time, breathing resistance, and hose obstruction in an open type and canister obstruction, weight unbalance, and an invisible black breathing bag in the closed type EEBD were estimated to be the main problems that need to be improved.

A numerical study on the performance of the smoke exhaust system according to the smoke exhaust method in emergency station for railway tunnel (철도터널 구난역의 제연방식에 따른 제연성능에 관한 수치 해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Seo, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.845-856
    • /
    • 2017
  • In the long railway tunnel, in order to secure safety in case of fire, it is required a emergency station. However, there is no standard or research results on smoke exhaust method and exhaust flow rate in emergency station, so it is necessary to study the smoke exhaust system for emergency station. In this study, we are created a numerical analysis model for emergency station where the evacuation cross passage connected to the service tunnel or the relative tunnel was installed at regular intervals (40 m intervals). And the fire analysis are carried out by varying the fire intensity (15, 30MW), the smoke exhaust method (only air supply, forced air supply and exhaust, forced air exhaust only), and the air flow rate (7, 14, $40m^3/s$). From the results of fire analysis, temperature and CO concentration are analyzed and ASET based on the limit temperature are compared at various condition. As a result, in the case with fire intensity of 15 MW, it is shown that a sufficiently safe evacuation environment can be ensured by applying forced air supply and exhaust method or forced air exhaust only method when the air flow rate is $7m^3/s$ above. In case of fire intensity of 30 MW, it is impossible to maintain the safety evacuation environment for more than 900 seconds when the exhaust air volume is below $14m^3/s$. And when the air flow rate is $40m^3/s$, the exhaust port is disposed at the side portion of the upper duct, which is most advantageous for securing the temperature-based safety.

Quantitative Risk Analysis for Railway Tunnels (철도터널 화재에 대한 정량적 위험도 분석)

  • Park, Jung Hyun;Shim, Cha Sang
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.400-412
    • /
    • 2017
  • What is particularly noteworthy from Korean and foreign railway tunnel disaster prevention standards is that for the sake of rapid evacuation, more stringent standards for provision of evacuation passages, which require high cost, are being applied. Korean standards stipulate that passage installation should be determined in accordance with the level of risk through a QRA analysis of each tunnel with 1km or longer length. As, however, detailed application criteria as fire occurrence probability, fire occurrence scenario, size of fires and evaluation criteria for level of social risk are not available, additional costs may be incurred due to excessive design. Thus, standards of an appropriate level need to be established. With this backdrop, this study selects detailed application conditions of a reasonable and appropriate level through a study and analysis of relevant documents and analyzes the maximum length of tunnels to which the application of evacuation passages, or the application major evacuation promotion facilities, can be relaxed, together with a QRA analysis of model tunnels (for high speed rail) with different tunnel lengths. In addition, the QRA results on tunnels, including those on the Honam high-speed rail, and analysis results for the model tunnels, are compiled, ; the ultimate results are compared with Korean and other countries' standards related to evacuation promotion facilities, As a result, The appropriateness of application standards are reviewed. These results are expected to be utilized as basic material for establishing a reasonable disaster prevention plan that will consider safety and economies.

A Study on the Character and Walking Velocity of Crowd Going up Stairs (계단에서 올라가는 군집보행의 속도에 관한 조사 및 특성에 관한 연구)

  • Park, Jae-Sung
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.72-77
    • /
    • 2011
  • The effort of transferring some parts of urban functions to the underground space is growing trend among modem cities because of the limit of horizontal land use, the rise of land value, the diversification of human desire, etc. Thus, the basement of building and the subway station have deepened. It calls our attention to safety about evacuation from the underground space to the ground. Until now, the study about crowding walk in stairs has been progressed, focusing on the crowding walk that is going down the stairs, and there is no study about crowding walk that is going up the stairs. This study measured walking pace by crowd density that is going up the stairs in the subway station stairs making one-way movement of crowd. The actual survey showed that the mathematical relation 'V=0.638-0.0949p' determines going up walking velocity at a gradient of $23^{\circ}$, and the mathematical relation will be 'V=0.597-0.1067p' at a gradient of $30^{\circ}$, when it is converted, based on the average walking velocity of crowd by the slope of the stairs which is recommended by Architectural Institute of Japan.