• Title/Summary/Keyword: 풍력에너지 변환시스템

Search Result 74, Processing Time 0.024 seconds

Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System (소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2019
  • In many countries, such as developing countries where electricity is scarce, small wind turbines in the form of Off Grid are an effective solution to solve power supply problems. In some countries, the expansion of power systems and the decline of electricity-intensive areas have led to the use of small wind power in urban road lighting, mobile communications base stations, aquaculture and seawater desalination. With this change, the size of the small wind power industry is expected to have greater potential than large-scale wind power. In the case of small wind power generators, the generator is controlled at a variable speed, and the voltage and current generated by the generator have many harmonic components. To solve this problem, the AC to DC converter to be studied in this paper is a three-phase step-up type converter with a single switch. The inductor current is controlled in discontinuous mode, and has a characteristic of having a unit power factor by eliminating the harmonic of the input current. The proposed converter is composed of LCL filter and three phase rectification boost converter at the input stage and a single phase full bridge for grid connection. It is a control system with energy storage system(ESS) that the system stabilization can be pursued against the electric power.

The Control of Z-Source Inverter for using DC Renewable Energy (직류 대체에너지 활용을 위한 Z-원 인버터 제어)

  • Park, Young-San;Bae, Cherl-O;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.169-172
    • /
    • 2007
  • This paper presents circuit models and control algorithms of distributed generation system(DGS) which consists of Z-type converter and PWM inverter. Z-type converter which employs both the L and C passive components and shoot-through zero vectors instead qf the conventional DC/DC converter in order to step up DC-link voltage. Discrete time sliding mode control with the asymptotic observer is used for current control. This system am be used for power conversion of DC renewable energy.

  • PDF

A Development of Control Algorithm for 2MVA Battery Energy Storage System (2MVA 배터리 에너지 저장 시스템 제어 알고리즘 개발)

  • Kim, Tae-Hyeong;Kim, Yun-Hyun;Kwon, Byung-Ki;Kim, Kwang-Seob
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.151-152
    • /
    • 2011
  • 본 논문에서는 스마트 그리드에 적용되는 2MVA 배터리 에너지 저장 시스템(BESS, Battery Energy Storage System)의 제어 알고리즘을 제안하고 검증하였다. BESS는 전력변환을 위한 PCS(Power Conditioning System), 배터리 제어 및 상태확인을 위한 BCS(Battery Conditioning System)와 상위 시스템으로부터 지령을 받아 PCS와 BCS를 제어하는 PMS(Power Management System)로 구성되어 있다. BESS는 풍력안정화를 위해 EMS(Energy Management System)의 지령을 받아 운전모드를 선택하고, 운전모드에 따라서 계통측 전력을 제어하거나 배터리측 전류를 제어하고, 배터리의 완전충전을 위해 전압제어를 한다.

  • PDF

The Application of Wind Energy-Hot Water Conversion System in Suwon Area (수원지방에서 풍력열변환 온수공급시스템의 적응성)

  • Kim, Y.J.;Ryou, Y.S.;Yun, Y.H.;Kang, K.C.;Baek, Y;Kang, Y.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.07a
    • /
    • pp.378-383
    • /
    • 2003
  • 최근 유류가격의 상승으로 석유를 난방에너지원으로 하는 시설원예 난방 소요비용이 크게 늘어나 시설원예 농가에 많은 어려움을 주고 있어 난방비 부담을 줄여줄 수 있는 기술 개발이 절실하게 요구되고 있다. 또한 최근 화석에너지 사용 과다에 따른 환경오염문제가 사회적 문제로 대두되면서 지구환경 보존에 대한 관심이 높아지고 있어 청정에너지인 자연에너지 이용에 관한 연구가 다양하게 이루어지고 있다. (중략)

  • PDF

The study on substructure design and analysis for 5MW offshore wind turbine (5MW급 해상풍력 하부구조물 설계 및 해석에 관한 연구)

  • Sun, Min-Young;Lee, Sung-Bum;Lee, Ki-Yeol;Moon, Byung-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1075-1080
    • /
    • 2014
  • This study aims at dedicating to relevant technology fields by suggesting design methods of structures and estimating their safety in relation to substructure for offshore wind power requiring high safety to various environment conditions. Especially, with respect to 5MW Offshore Wind Power System, this study will provide information about major wind directions and duration in combination with the developing wave climate at the test field. Therefore, connections between wind fields and approaching wave trains will be estimated and their intensity, direction and time shift will be pointed out. Furthermore, the local pressure distribution of breaking waves will be investigated by physical and numerical modeling. The currently applied structural and fatigue assessment of support structures for offshore wind energy converters is based on common design rules. Normally, constructions in structural engineering are treated as limited, single structures. This means that varying aspects of manufacturing are considered by high safety factors.

Model Predictive Control with Variable Sampling Time for Improving Power Quality of PMSG-based Wind Energy Conversion System in DC Microgrid (DC Microgrid 연계형 PMSG 기반 풍력에너지 변환 시스템의 전력 품질 개선을 위한 가변 샘플링 시간이 적용된 모델예측제어)

  • Lee, Jae-Hyung;Choo, Kyoung-Min;Jeong, Won-Sang;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.180-181
    • /
    • 2019
  • This paper proposes a method for improving the power quality of PMSG-based wind energy conversion system based on model predictive control in DC Microgrid. The MPC has a fast dynamic response. However, a large torque ripple deteriorating power quality is generated by a large and fixed switching period. On the other hand, the proposed method improves the power quality by setting the sampling time having zero torque error. The validity of the proposed method is verified through PSIM simulation.

  • PDF

Application of Secondary Control Hydrostatic Transmission in A Multi-Point Absorbing Wave Energy Converter (다수의 가동물체형 파력발전기에 있어서의 2차측 제어 정유압변속기 응용)

  • Do, H.T.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper presents a novel concept of wave energy converter for electric generation from the ocean wave energy. In this paper, a Multi-Point Absorbing Wave Energy Converter, shortened as MPAWEC by using Secondary Control Hydrostatic Transmission (SCHST) was proposed. The power take-off (PTO) system in the proposed MPAWEC includes multi heaving buoys to drive hydraulic pumps placed at different points. The application of SCHST in MPAWEC gives some advantages, such as longevity of hydraulic components; more energy is harvested; the variation of the pressure in the accumulator limited; therefore the accumulator volume is reduced and the output speed is more stable, etc. A PID controller was designed for speed control of the hydraulic motor. The simulation results indicated that the speed of the generator was ensured with the relative error as 0.67%; the efficiency of the proposed system was 71.4%.

Internet Monitoring of Wind-Photovoltaic Hybrid Generation System (풍력-태양광 복합발전 시스템의 인터넷 모니터링)

  • Yang, Si-Chang;Moon, Chae-Joo;Chang, Young-Hak;Soh, Soon-Yeol;Chung, Ji-Hyun;Kim, Eui-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.43-48
    • /
    • 2006
  • Recently, many researchers have shown great interest in wind-photovoltaic hybrid generation system which promotes electric power supply safely and progress of energy usage efficiently with complementary cooperation of a wind generation system and photovoltaic generation system. To use this hybrid generation system stably and effectively, we established a system which can acquire, analyse and save data and monitored remotely using internet. We constructed the signal conditioning circuit and used many kinds of converters to measure physical quantities such as wind velocity, intensity of illumination and temperature as well as many kinds of voltage and current for AC and DC. we acquired data from computer with data acquisition board, developed server program and client program which can download data that is monitored and saved in realtime at remote place. We analysed the measured data in relation to many conditions such as time and weather conditions.

Development of ELCB with Built-in Algorithm for DC Leakage Current Detection (DC 누설 전류 검출 알고리즘을 내장한 누전 차단기 개발)

  • Joo, Nam-Kyu;Kim, Nam-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.165-169
    • /
    • 2014
  • Digital load is increasing suddenly for various reasons, such as easy control and management. Accordingly, a consumption pattern of load is becoming DC. However, the power supply is supplied by AC power. The load power supply substantially needs DC power. AC power has to be converted to DC power. Renewable energy sources like solar, wind, fuel cells are DC power generation, but the transfer needs to through by AC power, thus DC power has to be converted to AC power. Resultantly, a multi-stage conversion loss is constantly increasing. The power distribution system of DC-based is required for effective use of these energy sources. This requires a DC load, as well as is necessary to develop DC ELCB which are able to detect DC leakage current for implementing protection. In this study, it realize detection algorithm about DC leakage current to verify the performance of the sensor and apply it to the ELCB which is based on DC. Therefore, it is expected to protect operating of DC power distribution system.

A Study on the Hybrid Arc Extinguishing Mechanism of the DC Circuit Breaker (DC 차단기의 하이브리드 아크 소호 기법에 관한 연구)

  • Joo, Nam-Kyu;Kim, Nam-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.250-256
    • /
    • 2015
  • Digital load is increasing suddenly for various reasons, such as easy control and management. Accordingly, a consumption pattern of load is becoming DC. However, the power supply is supplied by AC power. The load power supply substantially needs DC power. AC power has to be converted to DC power. Renewable energy sources like solar, wind and fuel cells are DC power generation, but the transfer needs to through by AC power, thus DC power has to be converted to AC power. Resultantly, a multi-stage conversion loss is constantly increasing. The power distribution system of DC-based is required for effective use of these energy sources. This requires a DC load, as well as is necessary to develop DC breaker. This study is expect for system and equipment for reliable DC power distribution through the study of the arc extinguish technology for direct current a hybrid arc extinguishing technology with permanent magnets technology.