• Title/Summary/Keyword: 표층 염분

Search Result 275, Processing Time 0.022 seconds

동중국해 북부해역 수온, 염분의 분포 변동 특성

  • Jang, Lee-Hyeon;Kim, Sang-U;Go, U-Jin;Geleekko, Yamada;Seo, Yeong-Sang
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.331-335
    • /
    • 2007
  • 본 연구에서는 장기간의 현장관측 수온, 염분자료를 분석하여 동중국해 북부해역에서 계절별 수온, 염분의 변동 특성을 조사하였다. 표층의 경우 춘계 수온상승에는 공간적인 차이가 있다. 또한 서부해역($125^{\circ}E$ 이서)에서는 32 psu 이하의 저염 분포가 나타나고 제주 남서해역에서 33psu 이하의 저염수가 춘계부터 제주 주변해역으로 확장한다. 하계 표층염분은 $28.0{\sim}32.4$ psu로 연중 최저값은 보이며, 전해역 표층 염분이 33psu 이하로 저염의 양자강 희석수가 하계에 동중국해 북부해역 표층 전체에 영향을 미치고 있다. 추계의 표층수온과 염분은 동고서저형의 수평분포를 나타낸다. 수온 하강은 서부해역인 대륙 연안수역이 동부의 대마난류수역에 비해 크고, 서부해역에서 33psu 이하의 설상형 저염분포가 이시기에 남동쪽으로 관입되는 형태로 나타나 동계의 남북방향의 염분전선과 이어지게 된다. 연직해황의 경우 동계 수온과 염분은 활발한 대륙작용에 의해 전수층에서 균일한 분포를 나타내며, 대륙연안수역에서는 저온, 저염($12^{\circ}C$, 33psu 이하)의 분포를, 대마난류수역에서는 고온, 고염($16^{\circ}C$, 34.4psu 이상)분포의 지역적인 특성으로 구별된다. 춘계에는 수온약층이 형성되며, 저층에는 동계에 형성되어 대륙연안수와 외양수 사이에 고립된 $13^{\circ}C$ 이하의 냉수괴가 분포한다. 염분은 표층 저염화가 시작된다. 하계에는 양자강 유출수의 영향으로 전해역 표층에서는 30psu 이하로 전해역에서 저염화 양상이 나타나며, 표층에서 30m 층까지 매우 강한 염분약층이 형성된다. 추계 수온 엽문은 균일한 연직수온분포가 나타나며, 동부해역에서는 수심 $75{\sim}100m$사이에서 수온, 염분약층이 형성된다. 동중국해의 수괴는 뚜렷한 계절 변동을 보이며, 대마난류수역인 동부해역에서는 수괴 계절변동의 요인으로 계절 수온변동이 지배적이고, 수온변동은 춘계와 하계 사이에 가장 크다. 중앙부와 대륙연안역인 서부해역에서는 수괴 계절변동에 수온외에 염분 변화가 주요한 요인으로 작용하며, 염분은 하계와 추계 사이에 가장 변동이 크게 나타난다. 즉, 동중국해의 수괴변동에는 변동요인에 따른 공간적인 차이가 있으며, 수괴변화 특성으로 동중국해는 수온변화가 수괴변동에 직접요인이 되는 동부 대마난류수역과 염분변화가 수괴변동의 직접요인인 서부의 대륙연안수역으로 구분된다.

  • PDF

A Development for Sea Surface Salinity Algorithm Using GOCI in the East China Sea (GOCI를 이용한 동중국해 표층 염분 산출 알고리즘 개발)

  • Kim, Dae-Won;Kim, So-Hyun;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1307-1315
    • /
    • 2021
  • The Changjiang Diluted Water (CDW) spreads over the East China Sea every summer and significantly affects the sea surface salinity changes in the seas around Jeju Island and the southern coast of Korea peninsula. Sometimes its effect extends to the eastern coast of Korea peninsula through the Korea Strait. Specifically, the CDW has a significant impact on marine physics and ecology and causes damage to fisheries and aquaculture. However, due to the limited field surveys, continuous observation of the CDW in the East China Sea is practically difficult. Many studies have been conducted using satellite measurements to monitor CDW distribution in near-real time. In this study, an algorithm for estimating Sea Surface Salinity (SSS) in the East China Sea was developed using the Geostationary Ocean Color Imager (GOCI). The Multilayer Perceptron Neural Network (MPNN) method was employed for developing an algorithm, and Soil Moisture Active Passive (SMAP) SSS data was selected for the output. In the previous study, an algorithm for estimating SSS using GOCI was trained by 2016 observation data. By comparison, the train data period was extended from 2015 to 2020 to improve the algorithm performance. The validation results with the National Institute of Fisheries Science (NIFS) serial oceanographic observation data from 2011 to 2019 show 0.61 of coefficient of determination (R2) and 1.08 psu of Root Mean Square Errors (RMSE). This study was carried out to develop an algorithm for monitoring the surface salinity of the East China Sea using GOCI and is expected to contribute to the development of the algorithm for estimating SSS by using GOCI-II.

Acoustic Channel Formation and Sound Speed Variation by Low-salinity Water in the Western Sea of Jeju during Summer (여름철 제주 서부해역의 저염분수로 인한 음속변화와 음파채널 형성)

  • Kim, Juho;Bok, Tae-Hoon;Paeng, Dong-Guk;Pang, Ig-Chan;Lee, Chongkil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Salinity does not generally affect sound speed because it shows very small variations in the ocean. However, low salinity water appears in the Western Sea of Jeju Island every summer so that sound speed and sound propagation can change near sea surface. We calculated Sound Speed Profile (SSP) using vertical profiles of temperature and salinity, which were averaged over years of normal salinity and low salinity (<28 psu) from 30 years (1980~2009) at 3 sites of Korea Oceanographic Data Center (KODC). As a result, sound speed variation by low salinity alone was -5.36 m/s at sea surface and -1.35 m/s at 10m depth for low salinity environments. Gradient of SSP was positive down to 5 m depth due to decrease of sound speed near surface, leading formation of haline channel. Simulation of acoustic propagation using a ray model (Bellhop) confirmed the haline channel. Haline channel has formed 4 times while hydrostatic channel controlled by only pressure has formed 9 times for 30 years. The haline channel showed larger critical angles of rays than hydrostatic channel. Haline channel was also formed at some sites among 20 measurement sites in low salinity water mass which appeared on August $1^{st}$ 2010.

Physical Environment Changes in the Keum River Estuary Due to Dike Gate Operation: III. Tidal Modulation of Low-salinity Water (하구언 수문 작동으로 인한 금강 하구역의 물리적 환경변화: III. 저염수의 조석동조)

  • Choi, Hyun-Yong;Kwon, Hyo-Keun;Lee, Sang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.115-125
    • /
    • 2001
  • To examine the movement of the freshwater discharged artificially into the estuary during ebbing period in the Keum River dike we observed surface salinity variations in three stations along the estuary channel in May 1998 and July 1997 and surface temperature and salinity along the ferry-route between Kunsan and Changhang during eighteen days in July 1999. Based upon the typical features of observed salinity variation, we analyzed the excursion and decay processes of the discharged water. When freshwater is discharged, the low-salinity water forms strong salinity front over the entire estuary width, which basically moves forth and back by tidal modulation along the channel, producing the sudden change of surface salinity with the front passage. Salinity distribution along the channel, which is deduced from time variation of mean salinity over the estuary width, after one tidal period from gate operation suggests that diluted low-salinity water is trapped to the front and surface salinity increases gradually toward the upstream region. This frontal distribution of salinity is interpreted to be produced by the sudden gate operation supplying and stopping of freshwater within about two hours. Daily repeat of freshwater discharge produces separation (double front) or merge between decaying and new-generated fronts depending on dike-gate opening time, and the front decays with salinity increasing if the freshwater supply is stopped more than two days. In addition, the observed fluctuations and deviations in surface salinity variation is explained in terms of the differences of fronts intensity, their transition time and temporal salinity front running along the channel, which can be generated due to artificial gate-operation for the discharging time and water volume in the estuary dike.

  • PDF

Analysis of Surface Sound Channel by Low Salinity Water and Its Mid-frequency Acoustic Characteristics in the East China Sea and the Gulf of Guinea (동중국해와 기니만에서 저염분수로 인한 표층음파채널과 중주파수 음향 특성 분석)

  • Kim, Hansoo;Kim, Juho;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Salinity affects sound speed in the low salinity environment, in the seas where freshwater from large rivers and flows into the marginal sea area near the Yangtze River and the Niger River. In this paper, SSC (Surface Sound Channel) formed by low salinity water was investigated in the East China Sea and the Gulf of Guinea of rainy season. The data from KODC (Korea Oceanographic Data Center) in the East China Sea and from ARGO (Array for Real-time Geostrophic Oceanography) in the Gulf of Guinea of the tropical area were used for analysis. SSC haline channel was formed 14 times among 32 SSC occurrences when the 90 data from 9 points were analyzed during a decade (2000 ~ 2009) in the East China Sea. In the Gulf of Guinea, haline channel was formed 18 times among 20 SSC occurrences during 3 years (2006 ~ 2009). When the sound speed gradient was analyzed from temperature-salinity gradient diagram, the gradients of both salinity and temperature affect SSC formation in the East China Sea. In contrast, the salinity gradient mostly affects SSC formation due to the least change of temperature in the well-developed mixed layer in the Gulf of Guinea. Their acoustic characteristics show that channel depth is 6.5 m, critical angle is $1.5^{\circ}$ and difference of transmission loss between surface and thermocline is 11.5 dB in the East China Sea, while channel depth is 18 ~ 24 m, critical angle is $4.0{\sim}5.4^{\circ}$ and difference of transmission loss is 21.5 ~ 27.9 dB in the Gulf of Guinea. These results are expected to be used as a basic understanding of the acoustic transmission changes due to low salinity water at the estuaries and the ocean with heavy precipitation.

Long Term Trend of Change In Water Temperature and Salinity in Coastal Waters around Korean Peninsula (한반도 근해 수온 및 염분의 장기변화 추이)

  • Jeong, Hee-Dong;Hwang, Jae-Dong;Jung, Kyu-Kui;Heo, Seung;Sung, Ki-Tach;Go, Woo-Jin;Yang, Jun-Yong;Kim, Sang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.2
    • /
    • pp.59-64
    • /
    • 2003
  • The long­term trend and inter­relationship with depth of temperature and salinity in coastal waters of Korea are studied using coastal oceanographic observation and serial oceanographic data measured by National Fisheries Research and Development Institute. Temperature of coastal waters of Korea except south­western sea of Korea where cold water appears to increase in summer. In case of temperature offshore, surface temperature of East Sea increases, the reverse, for 50m and 100m decreases. Temperature in South Sea of Korea increases in whole depth and for the Yellow Sea, surface temperature increases, but for 50m decreases. In case of salinity offshore, surface salinity of East Sea decreases, but for 50m increases. Surface salinity in South Sea of Korea decreases, the reverse, form 50m and 100m increases. salinity in the Yellow Sea decrease in whole depth According to the result of inter­relationship analysis, for temperature relationship coefficients of 50m and 100m in the East Sea and South Sea of Korea is higher, however, for the Yellow sea the inter­relationship between 50m and 100m is lower. In case of salinity, the inter­relationship between surface and 50m, and for the South Sea of Korea, between 50m and 100m, and for the Yellow Sea, between surface and 50m is higher.

  • PDF

Oceanological Characteristics of the Ko-Ri Sea Area. I. Annual Cyclic Changes in Water Temperature, Salinity, pH and Transparency (고리해역의 해양학적 특성 I. 수온, 염분, pH 및 투명도의 년간변화에 관하여)

  • Choe, Sang;Chung Tai Wha
    • 한국해양학회지
    • /
    • v.1
    • /
    • pp.37-48
    • /
    • 1971
  • Observations of water temperature, salinity, pH and transparency of the Ko-ri sea area were made between May 1969 and April 1970. A seasonal thermocline was well defined in August, strongly isolating the warm serface water(19-22$^{\circ}C$) from the cold bottom water (14-17.5$^{\circ}C$) introducing from the open sea. In February the coldest isothermal water (11$^{\circ}C$) occurred. In the warm months(May- September), the salinity patterns show great variations with the coastal run-off During the cold months(December-April) the highest isohaline water (35 ) occurred. Annual ranges of surface and bottom pH values were 7.8-8.4(averaging 8.27) and 7.9-8.4(averaging 8.26), respectively. The transparency was greatest (6.0-7.0m) during winter and spring months and least (1.2-2.5m) during summer months.

  • PDF

The Buffer Capacity of the Carbonate System in the Southern Korean Surface Waters in Summer (하계 한국 남부해역 표층수의 탄산계 완충역량)

  • HWANG, YOUNGBEEN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.1
    • /
    • pp.17-32
    • /
    • 2022
  • The buffer capacity of southern Korean waters in summer was quantified using data set of temperature, salinity, dissolved inorganic carbon, total alkalinity obtained from August 2020 cruise. The geographical distribution and variability of six buffer factors, which amended the existing Revelle factor, are discussed their relationship with the hydrological parameters of temperature and salinity. The calculated results of six buffer factors showed the spatial variations according to the distributions of various water masses. The buffer capacity was low in the East Sea Surface Mixed Water (ESMW) and South Sea Surface Mixed Water (SSMW) where upwelling occurred, and showed an intermediate value in the Yellow Sea Surface Water (YSSW). In addition, the buffer capacity increased in the order of high temperature Tsushima Warm Current (TWC) and Changjiang Diluted Water (CDW). This means that the Changjiang discharge water in summer strengthens the buffer capacity of the study area. The highest buffer capacity of CDW is due to its relatively higher temperature and biological productivity, and a summer stratification. Temperature showed a good positive correlation (R2=0.79) with buffer capacity in all water masses, whereas salinity exhibited a poor negative correlation (R2=0.30). High temperature strengthens buffer capacity through thermodynamic processes such as gas exchange and distribution of carbonate system species. In the case of salinity, the relationship with buffer capacity is reversed because salinity of the study area is not controlled by precipitation or evaporation but by a local freshwater input and mixing with upwelled water.

Seawater Quality of Jinhae Bay and Adjacent Sea of Gaduk Island, Korea (진해만 및 가덕도 주변 해역의 수질 환경)

  • Kim, Kyung-Tae;Kim, Eun-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.137-143
    • /
    • 2009
  • 진해만과 가덕도 주변 해역에서 2007년 2회(하계와 추계)에 걸쳐 표층 및 저층수 조사를 실시하여 수질 환경 특성을 파악하였다. 수온은 표층이 저층보다 높았는데 여름이 가을보다 표 저층간의 차이가 컸으며, 염분은 가덕도 남쪽에서 낙동강 물의 유입 영향으로 저염분을 나타내었다. 부유물질은 표층수의 경우 진해만 및 연안에서 높고 외해에서 낮았으며, 과거의 조사 농도 범위에 속하였다. POC는 계절별로 분포 차이가 있지만 유기물 유입원에 대한 근접성과 기초 생산아 영향을 받는 것으로 나타났다. COD는 표층에서 오염원의 영향이 많은 진해만에서 높고 외해로 가면서 낮아졌다. 여름에 진해만 일부 정점은 해역별 수질기준 III등급이었다. DO는 저층이 표층보다 낮았는데 특히 진해만 내완 외해의 깊을 수심 정점에서 차이가 크고, 하계에 성층에 의하여 수증간에 큰 자이를 나타내었다. 인산염-인과 규산염-규소는 저층수에서 용존산소가 낮아짐에 따라 높은 농도를 나타내는 경향이 강하였으며, 암모니아-질소도 내만의 저산소층에서 높은 농도를 보였다. 표층수의 용존 무기질소는 신항과 가덕도 주변에서 높고 진해만 서쪽 및 외해로 갈수록 낮아졌으며, 과거 조사 농도보다 낮고 좁은 변동 범위를 보였다. 총 질소와 총인도 외해역에서 낮은 농도였으며, 표층보다 저층이 높은 추세였고 여름에 더욱 뚜렷하였다. 총질소 평균 농도로는 해역별 수질기준과 I등급을 만족하였으나 정점별로는 $I{\sim}III$등급까지 변화가 컸는데 진해만 내의 저층 또는 외해의 깊은 수심을 갖는 정점에서 등급이 좋지 알았다. Chl-a는 진해만 내 또는 가덕수도에서 높은 분포였으며, 신항과 가덕도 남쪽에서는 과거보다 낮은 농도였다.

  • PDF

Environmental Characteristics and Catch Fluctuations of Set Net Ground in the Coastal Water of Hanlim in Cheju Island I. Properties of Temperature and Salinity (제주도 한림 연안 정치망어장의 환경특성과 어획량변동에 관한 연구 I. 수온 및 염분특성)

  • KIM Jun-Teck;JEONG Dong-Gun;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.859-868
    • /
    • 1998
  • In order to investigate the relation between the marine environmental characteristics and the change of the catch in set net, the marine environment properties were analyzed by temperature and salinity observed in the western coastal area of Cheju Island from 1995 to 1996 and the results are as follows 1) Main axis of Tsushima Current appeared in the western coastal area of Cheju Island was off 2$\~$3 miles from November to May. Therefore the waters of high temperature over $14^{\circ}C$ and high salinity from $34.40\%_{\circ}$ to $34.60\%_{\circ}$ were distributed homogeneously from surface to bottom in this time. But China Coastal Waters of low salinity appeared in the Cheju Strait from June to October, surface waters became of high temperature and low salinity, and middle and bottom waters became of the temperature from 11 to $14^{\circ}C$ and the salinity over $33.50\%_{\circ}$ and then vertically sharp thermocline and halocline are formed in the western coastal area of Cheju Island. In summer, the water temperature and salinity of the surface waters in wstern coastal area of Cheju Island were lower and higher respectively than that in middle area of the Cheju Strait and the temperature and salinity of the bottom waters in this area were higher and lower, respectively than that in middle area of the Cheju Strait. Such a distribution shows a tidal front in this coastal area. On the whole year, surface temperature and salinity were from 14 to $23^{\circ}C$ and from 30.60 to $34.60\%_{\circ}$, respectively, and annual fluctuation range of temperature and salinity was within $9^{\circ}C$ and $4.00\%_{\circ}$, respectively, Thus, annual fluctuation range in this area is much narrower than that in the Cheju Strait. In bottom water, temperature ranges from 14 to $20^{\circ}C$ through the year. Thus, the fluctuation range of temperature is narrow. The low temperature of from $11^{\circ}C$ to $13^{\circ}C$ appeared in the west enterance of Cheju Strait was not shown in this coastal area. 2) The salinity of bottom water was from $33.60\%_{\circ}$ to $34.40\%_{\circ}$ in 1995, while low salinity wale. below $32.00\%_{\circ}$ appeared all depth from June in 1996. Thus, the variation of hydrographic conditions in this area is narrow in winter, and wide in summer due to the influence of China Coastal Waters. 3) In summer, surface cold water, local eddy and fronts of temperature and salinity were showed within 2 mile from the west coast of the Cheju Island due to vertical mixing by tidal current. Especially, temperature and salinity of bottom water are changed with the change of depth around Biyang-Do. Thus, the front of temperature and salinity appeared clearly between shallow area with the depth of under 10 m and deep area with of the depth of more than 50m. Surface water in outside area where high temperature and low salinity water appear intrudes between Worlreong-Ri and Geumreung-Ri. Thus, the front of temperature and salinity was made along the line that connects from this coast to Biyang-Do, The temperature of the bottom water is $2^{\circ}C$ to $4^{\circ}C$ lower than that of the surface water and its salinity is $0.02\%_{\circ}$ to $0.08\%_{\circ}$ higher than that of the surface water even in shallow area.

  • PDF