DOI QR코드

DOI QR Code

Acoustic Channel Formation and Sound Speed Variation by Low-salinity Water in the Western Sea of Jeju during Summer

여름철 제주 서부해역의 저염분수로 인한 음속변화와 음파채널 형성

  • Kim, Juho (Department of Ocean System Engineering, College of Ocean Science, Jeju National University) ;
  • Bok, Tae-Hoon (Department of Ocean System Engineering, College of Ocean Science, Jeju National University) ;
  • Paeng, Dong-Guk (Department of Ocean System Engineering, College of Ocean Science, Jeju National University) ;
  • Pang, Ig-Chan ;
  • Lee, Chongkil
  • 김주호 (제주대학교 해양시스템공학과) ;
  • 복태훈 (제주대학교 해양시스템공학과) ;
  • 팽동국 (제주대학교 해양시스템공학과) ;
  • 방익찬 (제주대학교 지구해양과학과) ;
  • 이종길 (안동대학교 기계교육과)
  • Received : 2012.08.23
  • Accepted : 2012.11.17
  • Published : 2013.01.31

Abstract

Salinity does not generally affect sound speed because it shows very small variations in the ocean. However, low salinity water appears in the Western Sea of Jeju Island every summer so that sound speed and sound propagation can change near sea surface. We calculated Sound Speed Profile (SSP) using vertical profiles of temperature and salinity, which were averaged over years of normal salinity and low salinity (<28 psu) from 30 years (1980~2009) at 3 sites of Korea Oceanographic Data Center (KODC). As a result, sound speed variation by low salinity alone was -5.36 m/s at sea surface and -1.35 m/s at 10m depth for low salinity environments. Gradient of SSP was positive down to 5 m depth due to decrease of sound speed near surface, leading formation of haline channel. Simulation of acoustic propagation using a ray model (Bellhop) confirmed the haline channel. Haline channel has formed 4 times while hydrostatic channel controlled by only pressure has formed 9 times for 30 years. The haline channel showed larger critical angles of rays than hydrostatic channel. Haline channel was also formed at some sites among 20 measurement sites in low salinity water mass which appeared on August $1^{st}$ 2010.

일반적으로 해양에서는 염분이 크게 변하지 않기 때문에 염분변화로 인한 음속변화는 무시할 수 있다. 그러나 제주 서부 해역에서는 매년 여름 저염분수의 영향으로 염분이 낮아지는 현상이 발생하여 표층 음속의 변화가 발생한다. 해양자료센터의 자료를 이용하여 제주 서부해역 세 정점에서의 30년(1980~2009) 자료 중 28 psu 이하의 저염분수가 발생한 해와 그렇지 않은 해의 수직분포를 각각 평균하여 음속분포를 구한 후에 수온과 염분에 의한 음속 변화를 분석하였다. 그 결과 저염분수 환경에서 염분에 의한 음속 변화는 표층에서 -5.36 m/s, 수심 10 m에서 -1.35 m/s 인 것으로 나타났다. 또한 표층 음속 감소로 인해 수심 약 5 m까지의 음속 수직 분포가 양(+)의 기울기를 갖게 되어 표층 염분채널이 형성되었으며 벨홉(Bellhop)모델을 이용한 음파전달 모의실험을 통해 이를 확인하였다. 30년간 표층채널 발생 동향을 분석한 결과 혼합층에서 압력에 의해 발생하는 정수채널은 9회, 저염분에 의해 발생하는 염분 채널은 5회로 나타났으며 염분 채널이 발생한 경우는 정수 채널에 비해 음선 임계각이 크게 나타나는 것으로 확인되었다. 또한 2010년 8월 1일 제주 서부해역에 발생하였던 저염분수의 공간적 분포를 측정한 자료에서도 일부 정점에서 염분채널이 형성되었다.

Keywords

References

  1. T. U. Bhaskar, D. Swain, and M. Ravichandran, "Seasonal variability of sonic layer depth in the central arabian sea," Ocean Science Journal 43, 147-152 (2008). https://doi.org/10.1007/BF03020695
  2. T. Delcroix and M. McPhaden, "Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992-2000," J. Geophys. Res. Oceans. 107, 8002 (2002). https://doi.org/10.1029/2002JD002304
  3. T. Delcroix and R. Murtugudde, "Sea surface salinity changes in the East China Sea during 1997-2001 : influence of the yangtze river," Geophys. Res. ceans. 107, 8008 (2002). https://doi.org/10.1029/2001JD000371
  4. B. Choi and J. Wilkin, "The effect of wind on the dispersal of the Hudson River plume," J. Phys. Oceanogr 24, 1878-1896 (2007).
  5. H. K. Rho, K. H. Chung, "Basic studies pm the environmental characteristics of the coast of jeju island" (in Korean), bull. Mar. Resour. Res. Inst. 4, 1-5 (1980).
  6. C. J. Kang, "A Study on the seasonal variation of the water masses in the southern sea of korea" (in Korean), Bull. NFRDA 12, 107-121 (1974).
  7. K. H. Oh, Y. G. Park, D. I. Lim, H. S. Jung and J. S. Shin, "Characteristics of temperature and salinity observed at the Ieodo ocean research station" (in Korean), J. Mar. Env. Eng. Soc. Kor. 9, 2006.
  8. I. O. Kim, H. K. Rho, "A study on china coastal water appeared in the neighboring seas of cheju island" (in Korean), Bull. Kor. Fish. Soc. 27, 515-528 (1994).
  9. R.C. Beardsley, R. Limeburner, D. Hu, K. Le, G.A. Cannon and D. J. Pasinski, "Structure of the changjiang river plume in the east china sea during june 1980," SSCS, 1, 265-284 (1983)
  10. H. Yu, D. Zheng and J. Jiang, "Basic hydrographic characteristics of the studied area," SSCS, 1, 270-279 (1983)
  11. H. J. Lie "Sructure and eastward extenstion of the Changjiang River plume in the East china Sea," J. Geophys. Res. 108, 3077 (2003). https://doi.org/10.1029/2001JC001194
  12. K. H. Hyun and I. C. Pang, "Abnormally low salinity waters around cheju island in summer" (in Korean), Bull. Mar. Res. Inst. Cheju Nat. Univ. 2, 69-78 (1998).
  13. S. S. Kim, W. J. Go, Y. J. Jo, P. Y. Lee and K. A. Jeon, "Low salinity anomaly and nutrient distribution at surface water of the south sea of koear during 1996 summer" (in Korean) J. Kor. Soc. Oceanogr. 3, 165-169 (1998).
  14. S. E. Dosso and N. R. Chapman, "Acoustic propagation in a shallow sound channel in the northeast pacific ocean," J. Acoust. Soc. Am. 75, 413-418 (1984). https://doi.org/10.1121/1.390511
  15. N. P. Bulgakov, Yu. V. Artamonov, P. D. Lomakin and V. N. Cheremin, "Acoustic properties of surface water masses in the tropical Atlantic and their seasonal variability," Sov. J. Phys. Oceanogr. 3, 141-147 (1992). https://doi.org/10.1007/BF02197620
  16. H. Medwin, "Speed of sound in water: a simple equation for realistic parameters," J. Acoust. Soc. Am. 58, 1318-1319 (1975). https://doi.org/10.1121/1.380790
  17. M. B. Porter, The BELLHOP manual and user's guide: PRELIMINARY DRAFT, http://oalib.hlsresearch.com/Rays/index.html (2010).
  18. L. M. Brekhovskikh and Y. P. Lysanov, Fundamentals of Ocean Acoustics, 3rd ed. (Springer-Verlag, New York, 2003).
  19. J. S. Youn, T. J. Kim, "Geochemical composition and provenance of surface sediments in the western part of jeju island, korea" (in Korean), JKESS, 29, 328-340 (2008). https://doi.org/10.5467/JKESS.2008.29.4.328
  20. E. L. Hamilton, "Geoacoustic modeling of the sea floor," J. Acoust. Soc. Am.68, 1313-1340 (1980). https://doi.org/10.1121/1.385100
  21. R. J. Urick, Principles of Underwater Sound, 3rd ed. (McGrew-Hill, New York, 1983).
  22. Korea Oceanographic Data Center, http://kodc.nfrdi.re.kr/
  23. F. N. Fritsch and R. E. Carlson, "Monotone piecewise cubic interpolation," SIAM J. Numer. Anal. 17, 238-246 (1980). https://doi.org/10.1137/0717021

Cited by

  1. Long-Range Sound Transmission Characteristics in Shallow-Water Channel with Thermocline vol.33, pp.5, 2014, https://doi.org/10.7776/ASK.2014.33.5.273
  2. Analysis of haline channel formed in the East China Sea and the Atlantic Ocean using the T-S gradient diagram vol.38, pp.2, 2014, https://doi.org/10.5916/jkosme.2014.38.2.208
  3. Analysis of Surface Sound Channel by Low Salinity Water and Its Mid-frequency Acoustic Characteristics in the East China Sea and the Gulf of Guinea vol.34, pp.1, 2015, https://doi.org/10.7776/ASK.2015.34.1.001
  4. Low-salinity-induced surface sound channel in the western sea of Jeju Island during summer vol.137, pp.3, 2015, https://doi.org/10.1121/1.4913812