Browse > Article
http://dx.doi.org/10.7850/jkso.2022.27.1.017

The Buffer Capacity of the Carbonate System in the Southern Korean Surface Waters in Summer  

HWANG, YOUNGBEEN (Division of Earth Environmental System Oceanography Major, Pusan National University)
LEE, TONGSUP (Division of Earth Environmental System Oceanography Major, Pusan National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.27, no.1, 2022 , pp. 17-32 More about this Journal
Abstract
The buffer capacity of southern Korean waters in summer was quantified using data set of temperature, salinity, dissolved inorganic carbon, total alkalinity obtained from August 2020 cruise. The geographical distribution and variability of six buffer factors, which amended the existing Revelle factor, are discussed their relationship with the hydrological parameters of temperature and salinity. The calculated results of six buffer factors showed the spatial variations according to the distributions of various water masses. The buffer capacity was low in the East Sea Surface Mixed Water (ESMW) and South Sea Surface Mixed Water (SSMW) where upwelling occurred, and showed an intermediate value in the Yellow Sea Surface Water (YSSW). In addition, the buffer capacity increased in the order of high temperature Tsushima Warm Current (TWC) and Changjiang Diluted Water (CDW). This means that the Changjiang discharge water in summer strengthens the buffer capacity of the study area. The highest buffer capacity of CDW is due to its relatively higher temperature and biological productivity, and a summer stratification. Temperature showed a good positive correlation (R2=0.79) with buffer capacity in all water masses, whereas salinity exhibited a poor negative correlation (R2=0.30). High temperature strengthens buffer capacity through thermodynamic processes such as gas exchange and distribution of carbonate system species. In the case of salinity, the relationship with buffer capacity is reversed because salinity of the study area is not controlled by precipitation or evaporation but by a local freshwater input and mixing with upwelled water.
Keywords
Buffer capacity; Dissolved inorganic carbon; Total alkalinity; Southern Korean waters;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tsunogai, S., S. Watanabe and T. Sato, 1999. Is there a "continental shelf pump" for the absorption of atmospheric CO2?. Tellus B: Chemical and Physical Meteorology, 51(3): 701-712.   DOI
2 Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.F. Weirig, Y. Yamanaka and A. Yool, 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059): 681-686.   DOI
3 Friedlingstein, P., M. O'sullivan, M.W. Jones, R.M. Andrew, J. Hauck, A. Olsen, G.P. Peters, W. Peters, J. Pongratz, S. Sitch, C.L. Quere, J.G. Canadell, P. Ciais, R.B. Jackson, S. Alin, L.E.O.C. Aragao, A. Arneth, V. Arora, N.R. Bates, M. Becker, A. Benoit-Cattin, H.C. Bittig, L. Bopp, S. Bultan, N. Chandra, F. Chevallier, L.P. Chini, W. Evans, L. Florentie, P.M. Forster, T. Gasser, M. Gehlen, D. Gilfillan, T. Gkritzalis, L. Gregor, N. Gruber, I. Harris, K. Hartung, V. Haverd, R.A. Houghton, T. Ilyina, A.K. Jain, E. Joetzjer, K. Kadono, E. Kato, V. Kitidis, J.I. Korsbakken, P. Landschutzer, N. Lefevre, A. Lenton, S. Lienert, Z. Liu, D. Lombardozzi, G. Marland, N. Metzl, D.R. Munro, J.E.M.S. Nabel, S.I. Nakaoka, Y. Niwa, K. O'Brien, T. Ono, P.I. Palmer, D. Pierrot, B. Poulter, L. Resplandy, E. Robertson, C. Rodenbeck, J. Schwinger, R. Seferian, I. Skjelvan, A.J.P. Smith, A.J. Sutton, T. Tanhua, P.P. Tans, H. Tian, B. Tilbrook, G. van der Werf, N. Vuichard, A.P. Walker, R. Wanninkhof, A.J. Watson, D. Willis, A.J. Wiltshire, W. Yuan, X. Yue and S. Zaehle, 2020. Global carbon budget 2020. Earth System Science Data, 12(4): 3269-3340.
4 Laruelle, G.G., H.H. Durr, C.P. Slomp and A.V. Borges, 2010. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophysical Research Letters, 37(15).
5 Cai, W.J., M. Dai and Y. Wang, 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophysical Research Letters, 33(12).
6 Broecker, W.S. and E. Clark, 2001. A dramatic Atlantic dissolution event at the onset of the last glaciation. Geochemistry, Geophysics, Geosystems, 2(11): 1525-2027.
7 Broecker, W.S. and T.H. Peng, 1974. Gas exchange rates between air and sea. Tellus, 26(1-2): 21-35.   DOI
8 Wolf-Gladrow, D.A., R.E. Zeebe, C. Klaas, A. Kortzinger and A.G. Dickson, 2007. Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. Marine Chemistry, 106(1-2): 287-300.   DOI
9 Tsunogai, S., S. Watanabe, J. Nakamura, T. Ono and T. Sato, 1997. A preliminary study of carbon system in the East China Sea. Journal of Oceanography, 53(1): 9-17.   DOI
10 Wang, S.L., C.T.A. Chen, G.H. Hong and C.S. Chung, 2000. Carbon dioxide and related parameters in the East China Sea. Continental Shelf Research, 20(4-5): 525-544.   DOI
11 Xiong, T.Q., P.F. Liu, W.D. Zhai, Y. Bai, D. Liu, D. Qi, N. Zheng, J.W. Liu, X.H. Guo, T.Y. Cheng, H.X. Zhang, S.Y. Wang, X.Q. He, J.F. Chen and R. Li, 2019. Export flux, biogeochemical effects, and the fate of a terrestrial carbonate system: from Changjiang (Yangtze River) Estuary to the East China Sea. Earth and Space Science, 6(11): 2115-2141.   DOI
12 Zeebe, R.E. and D. Wolf-Gladrow, 2001. CO2 in seawater: equilibrium, kinetics, isotopes. Gulf Professional Publishing, pp. 346.
13 Zhou, Z.Q., S.P. Xie and R. Zhang, 2021. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proceedings of the National Academy of Sciences, 118(12).
14 Shim, J., D. Kim, Y.C. Kang, J.H. Lee, S.T. Jang and C.H. Kim, 2007. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea. Continental Shelf Research, 27(20): 2623-2636.   DOI
15 Park, Y.H., 1986. Water characteristics and movements of the Yellow Sea Warm Current in summer. Progress in Oceanography, 17(3-4): 243-254.   DOI
16 Chen, C.T.A. and A.V. Borges, 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8-10): 578-590.   DOI
17 Gruber, N., D. Clement, B.R. Carter, R.A. Feely, S. Van Heuven, M. Hoppema, M. Ishii, R.M. Key, A. Kozyr, S.K. Lauvset, C.L. Monaco, J.T. Mathis, A. Murata, A. Olsen, F.F. Perez, C.L. Sabine, T. Tanhua and R. Wanninkhof, 2019. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363(6432): 1193-1199.   DOI
18 Broecker, W.S. and T.S. Peng, 1982. Tracers in the Sea. Eldigio Press, Palisades, NY, pp. 690.
19 Limeburner, R., R.C. Beardsley and J. Zhao, 1983. Water masses and circulation in the East China Sea. In: Proceedings of the International Symposium on Sedimentation on the Continental shelf with Special Reference to the East China Sea, China Ocean Press, Hangzhou, China, pp. 285-294.
20 Millero, F.J., K. Lee and M. Roche, 1998. Distribution of alkalinity in the surface waters of the major oceans. Marine Chemistry, 60(1-2): 111-130.   DOI
21 Redfield, A.C., B.H. Ketchum and F.A. Richards, 1963. The influence of organisms on the composition of seawater. In: The Sea, pp. 26-77.   DOI
22 Rubey, W.W., 1951. Geologic history of sea water: an attempt to state the problem. Geological Society of America Bulletin, 62(9): 1111-1148.   DOI
23 Caldeira, K. and M.E. Wickett, 2003. Anthropogenic carbon and ocean pH. Nature, 425(6956): 365-365.   DOI
24 Cai, W.J., Y.Y. Xu, R.A. Feely, R. Wanninkhof, B. Jonsson, S.R. Alin, L. Barbero, J.N. Cross, K. Azetsu-Scott, A.J. Fassbender, B.R. Carter, L.-Q. Jiang, P. Pepin, B. Chen, N. Hussain, J.J. Reimer, L. Xue, J.E. Salisbury, J.M. Hernandez-Ayon, C. Langdon, Q. Li, A.J. Sutton, C.T.A. Chen and D.K. Gledhill, 2020. Controls on surface water carbonate chemistry along North American ocean margins. Nature Communications, 11(1): 1-13.   DOI
25 Chou, W.C., G.C. Gong, D.D. Sheu, C.C. Hung and T.F. Tseng, 2009. Surface distributions of carbon chemistry parameters in the East China Sea in summer 2007. Journal of Geophysical Research: Oceans, 114(C7).
26 Mehrbach, C., C.H. Culberson, J.E. Hawley and R.M. Pytkowicx, 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure 1. Limnology and Oceanography, 18(6): 897-907.   DOI
27 Takahashi, T., S.C. Sutherland, D.W. Chipman, J.G. Goddard, C. Ho, T. Newberger, C. Sweeney and D.R. Munro, 2014. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Marine Chemistry, 164: 95-125.   DOI
28 Monterey, G.I. and S. Levitus, 1997. Seasonal variability of mixed layer depth for the world ocean. NOAA Atlas NESDIS 14, Washington, D.C., U.S.A., pp. 100.
29 Lewis, E. and D. Wallace, 1998. Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
30 Middelburg, J.J., K. Soetaert and M. Hagens, 2020. Ocean alkalinity, buffering and biogeochemical processes. Reviews of Geophysics, 58(3).
31 Pickard, G.L. and W.J. Emery, 1990. Descriptive Physical Oceanography. Pergamon, Tarrytown, N.Y., pp. 320.
32 Xiong, T.Q., Q.S. Wei, W.D. Zhai, C.L. Li, S.Y. Wang, Y.X. Zhang, S.J. Liu and S.Q. Yu, 2020. Comparing subsurface seasonal deoxygenation and acidification in the Yellow Sea and northern East China Sea along the north-to-south latitude gradient. Frontiers in Marine Science, 7: 686.   DOI
33 Hur, H.B., G.A. Jacobs and W.J. Teague, 1999. Monthly variations of water masses in the Yellow and East China Seas, November 6, 1998. Journal of Oceanography, 55(2): 171-184.   DOI
34 Jiang, L.Q., B.R. Carter, R.A. Feely, S.K. Lauvset and A. Olsen, 2019. Surface ocean pH and buffer capacity: past, present and future. Scientific Reports, 9(1): 1-11.   DOI
35 Wang, S.Y. and W.D. Zhai, 2021. Regional differences in seasonal variation of air-sea CO2 exchange in the Yellow Sea. Continental Shelf Research, 218: 104393.   DOI
36 Egleston, E.S., C.L. Sabine and F.M. Morel, 2010. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Global Biogeochemical Cycles, 24(1): 1-9.
37 Dickson, A.G. and F.J. Millero, 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers, 34(10): 1733-1743.   DOI
38 Dickson, A.G., 1990. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Research Part A. Oceanographic Research Papers, 37(5): 755-766.   DOI
39 Dickson, A.G., C.L. Sabine and J.R. Christian, 2007. Guide to best practices for ocean CO2 measurement. Sidney, British Columbia, North Pacific Marine Science Organization, pp. 39-87.
40 Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry and F.J. Millero, 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305(5682): 362-366.   DOI
41 Gattuso, J.P. and L. Hansson, 2011. Ocean acidification. Oxford University Press, Oxford, New York, pp. 352.
42 Cai, W.J., R.A. Feely, J.M. Testa, M. Li, W. Evans, S.R. Alin, Y.Y. Xu, G. Pelletier, A. Ahmed, D.J. Greeley, J.A. Newton and N. Bednarsek, 2021. Natural and anthropogenic drivers of acidification in large estuaries. Annual Review of Marine Science, 13: 23-55.   DOI
43 Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T.H. Peng, A. Kozyr, T. Ono and A.F. Rios, 2004. The oceanic sink for anthropogenic CO2. Science, 305(5682): 367-371.   DOI
44 Qu, B., J. Song, H. Yuan, X. Li, N. Li, L. Duan and X. Lu, 2015. Summer carbonate chemistry dynamics in the Southern Yellow Sea and the East China Sea: Regional variations and controls. Continental Shelf Research, 111: 250-261.   DOI
45 Revelle, R. and H.E. Suess, 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9(1): 18-27.   DOI
46 Roden, G.I., 1979. The depth variability of meridional gradients of temperature, salinity and sound velocitTy in the western North Pacific. Journal of Physical Oceanography, 9(4): 756-767.   DOI