• Title/Summary/Keyword: 표면파 분산곡선

Search Result 45, Processing Time 0.027 seconds

1-D Shear Wave Velocity Structure of Northwestern Part of Korean Peninsula (한반도 북서부의 1차원 전단파 속도구조)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.555-560
    • /
    • 2019
  • One-dimensional shear wave velocity structure of North Korea is constrained using short (2-sec) to long period (30-sec) Rayleigh waves generated from four seismic events in China. Rayleigh waves are well recorded at the five broadband seismic stations (BRD, SNU, CHNB, YKB, KSA) which are located near to the border between North and South Korea. Group velocities of fundamental-mode Rayleigh waves are estimated with the Multiple Filter Analysis and refined by using the Phase Matched Filter. Average group velocity dispersion curve ranging from 2.9 to 3.2 km/s, is inverted to constrain the shear wave velocity structures. Relatively low group velocity dispersion curves along the path between the events to BRD at period from 4 to 6 seconds may correspond to the sedimentary sequence of the West Korea Bay Basin (WKBB) in the Yellow Sea. The low velocity zone in deep layers (14-20 km) may be related to the deep sedimentary structure in Pyongnam basin. The fast shear wave velocity structure from the surface to the depth of 14 km is consistent with the existence of metamorphic rocks and igneous bodies in Nangrim massif and Pyongnam basin.

Analytical Studies for SASW Measurements Underwater

  • Lee, Byung-Sik
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.53-62
    • /
    • 1997
  • Analytical studies were conducted to develop the Spectral-Analysis-of-Surface-Waves (SASW) method for underwater use. For the precise estimation of the in-situ soil stiffness profile from SASW measurements, it is essential to determine economical and reasonable theoretical dispersion curves reflecting various experimental conditions. In this paper, therefore, analytical methods are mainly discussed, which were developed to determine theoretical dispersion curves of surface waves propagated along the soil-water interface. Application of the analytical methods is then illustrated by an example involving estimation of a stiffness profile through a forward modeling process of SASW measurements. Applicabilities of the SASW method as well as the developed analytical methods are evaluated, respectively, from the example.

  • PDF

Application of linear-array microtremor surveys for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파 탐사 적용)

  • Cha, Young-Ho;Kang, Jong-Suk;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.108-113
    • /
    • 2006
  • Urban conditions, such as existing underground facilities and ambient noise due to cultural activity, restrict the general application of conventional geophysical techniques. At a tunnelling site in an urban area along an existing railroad, we used the refraction microtremor (REMI) technique (Louie, 2001) as an alternative way to get geotechnical information. The REMI method uses ambient noise recorded by standard refraction equipment and a linear geophone array to derive a shear-wave velocity profile. In the inversion procedure, the Rayleigh wave dispersion curve is picked from a wavefield transformation, and iteratively modelled to get the S-wave velocity structure. The REMI survey was carried out along the line of the planned railway tunnel. At this site vibrations from trains and cars provided strong seismic sources that allowed REMI to be very effective. The objective of the survey was to evaluate the rock mass rating (RMR), using shear-wave velocity information from REMI. First, the relation between uniaxial compressive strength, which is a component of the RMR, and shear-wave velocity from laboratory tests was studied to learn whether shear-wave velocity and RMR are closely related. Then Suspension PS (SPS) logging was performed in selected boreholes along the profile, in order to draw out the quantitative relation between the shear-wave velocity from SPS logging and the RMR determined from inspection of core from the same boreholes. In these tests, shear-wave velocity showed fairly good correlation with RMR. A good relation between shear-wave velocity from REMI and RMR could be obtained, so it is possible to estimate the RMR of the entire profile for use in design of the underground tunnel.

Characterization of Deep Shear Wave Velocity Profiles in the Gimhae Plains Using the Microtremor Array Method (상시미동 표면파 분석에 의한 김해평야 퇴적층 심부 전단파 속도 결정)

  • Kim, Jae Hwi;Jeong, Seokho
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.17-27
    • /
    • 2022
  • To characterize the dynamic properties of Gimhae Plains sediments, we calculated natural frequencies using microtremor horizontal-to-vertical spectral ratios and derived shear wave velocity profiles by inversion of Rayleigh-wave dispersion curves obtained by the high frequency-wavenumber and modified spatial autocorrelation methods. Our results suggest that in this region, strong amplification of ground motion is expected in the vibration frequency (f ≥ 1 Hz). Additionally, obtained velocity profiles show that shear wave velocities are ~200 and 400 m/s for the shallow marine and old fluvial sediments, respectively. Bedrock is possibly encountered at depths of 60-100 m at most sites. We developed a simplified shear wave velocity model of shallow sediments based on the obtained profiles. Our results suggest that a large area in the Gimhae Plains could be categorized as an S6 site based on the Korean seismic design code (KDS 17 10 00).

Evaluation of Dynamic Properties of Natural Soils and Pavement Systems Using Surface Wave Technique - Theoretical Dispersion Curves - (표면파기법을 이용한 자연지반 및 포장구조의 동적물성 추정에 관한 연구 - 이론적 분산곡선 -)

  • Kim, Soo Il;Woo, Je Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.121-130
    • /
    • 1987
  • A new analytical method to determine the theoretical dispersion curves of Rayleigh wave in multilayered elastic media is developed. The method developed in this study gives the solutions for unlimited frequency, and is essential part of surface wave techniques to evaluate the layer profiles and dynamic properties of soils and pavement systems. Delta-Matrix technique is utilized to overcome the overflow and loss of precision problem inherent in the original Thomson-Haskell formulation at high frequencies. Conventional inversion methods based on the original Thomson-Haskell formulation lead to erroneous results due to the limitations on the layer profiles and the magnitude of frequency. The method developed in this study establishes the base of the research on more accurate and efficient inversion method, especially for the pavement systems as well as the natural soils.

  • PDF

Development of advanced phase spectrum for surface wave method (표면파 시험을 위한 향상된 위상각 스펙트럼 결정방법의 개발)

  • Park, Hyung-Choon;Joh, Seung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.599-604
    • /
    • 2008
  • The dispersive phase velocity of a wave propagating through a system is an important parameter and carries valuable information in non-destructive tests related to multilayered systems such as a soil site. The dispersive phase velocity of a wave can be determined using the phase spectrum, which is easily evaluated through the cross power spectrum. However, the phase spectrum as determined using the cross power spectrum is sensitive to background noise which always exists in the field. This causes difficulties in the determination of the dispersive phase velocities. In this paper, a new method to evaluate the phase spectrum using the harmonic wavelet transform is proposed. The proposed method can successfully remove background noise effects. To evaluate the validity of the proposed method, numerical simulations of multi-layered systems were performed. Phase spectrums by the proposed method were found to be in good agreement with the actual phase spectrums under conditions characterized by heavy background noise. This shows the potential of the proposed method.

  • PDF

Surface wave Tomography of the Korean Peninsula by Noise Cross-correlation Method (잡음 상호상관 기법을 이용한 한반도의 표면파 토모그래피에 대한 연구)

  • Cho, Kwang-Hyun;Kang, Ik-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.133-136
    • /
    • 2007
  • Cross correlation of seismic-background motions (Campillo and Paul, 2003; Shapiro et al., 2005) is applied to observations from the Korean Meteorological Administration seismic network to estimate the short-period Rayleigh and Love wave dispersion characteristics of the region. Standard processing procedures are applied to the cross correlation, except that signal whitening is used in place of one-bit sampling to equalize power in signals from different times. Multiple-filter analysis is used to extract the group velocities from the estimated Green's functions, which are then used to image the spatially varying dispersion at periods between 0.5 and 20 sec. The tomographic inversion technique used inverts all periods simultaneously to provide a smooth dispersion curve as a function of period in addition to the usual smooth spatial image for a given period. The Gyeongsang Basin in the southeastern part of the peninsula is clearly resolved with lower group velocities.

  • PDF

S-wave Velocity Structure Beneath the KS31 Seismic Station in Wonju, Korea Using the Joint Inversion of Receiver Functions and Surface-wave Dispersion Curves and the H-κ Stacking Method (수신함수와 표면파 분산곡선의 복합역산 및 수신함수 H-κ 중첩법을 이용한 원주 KS31 지진관측소 하부의 S파 지각 속도구조)

  • Jeon, Tae-Hyeon;Kim, Ki-Young;Park, Yong-Cheol;Kang, Ik-Bum
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • To estimate the S-wave velocity structure beneath the KS31 broad-band station in Wonju, Korea, we used $H-{\kappa}$ stacking and joint inversion of receiver functions and surface-wave dispersion curves derived from 297 teleseismic events (Mw > 5.5) recorded during the period between 2002 and 2009. We thereby determined that the average depth to a nearly flat Moho is $32.4{\pm}0.5\;km$ within tens of kilometer radius of the seismic station. For the crust at this location, we estimate an average shear-wave velocity of 3.69 km/s and a ratio of P- to S-wave velocities, $V_p/V_s$, of $1.72{\pm}0.04$, as is typical for continental crust. A negative phase in the receiver functions at 1 s indicates the presence of a shearwave low velocity layer in a depth interval of 10 to 18 km in the upper crust beneath the KS31 station.

Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations (토목관련 천부층 조사에서 다중 모드 표면파 역산의 효과)

  • Feng Shaokong;Sugiyama Takeshi;Yamanaka Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2005
  • Inversion of multi-mode surface-wave phase velocity for shallow engineering site investigation has received much attention in recent years. A sensitivity analysis and inversion of both synthetic and field data demonstrates the greater effectiveness of this method over employing the fundamental mode alone. Perturbation of thickness and shear-wave velocity parameters in multi-modal Rayleigh wave phase velocities revealed that the sensitivities of higher modes: (a) concentrate in different frequency bands, and (b) are greater than the fundamental mode for deeper parameters. These observations suggest that multi-mode phase velocity inversion can provide better parameter discrimination and imaging of deep structure, especially with a velocity reversal, than can inversion of fundamental mode data alone. An inversion of the theoretical phase velocities in a model with a low velocity layer at 20 m depth can only image the soft layer when the first higher mode is incorporated. This is especially important when the lowest measurable frequency is only 6 Hz. Field tests were conducted at sites surveyed by borehole and PS logging. At the first site, an array microtremor survey, often used for deep geological surveying in Japan, was used to survey the soil down to 35 m depth. At the second site, linear multichannel spreads with a sledgehammer source were recorded, for an investigation down to 12 m depth. The f-k power spectrum method was applied for dispersion analysis, and velocities up to the second higher mode were observed in each test. The multi-mode inversion results agree well with PS logs, but models estimated from the fundamental mode alone show f large underestimation of the depth to shallow soft layers below artificial fill.

Near-surface P- and S-wave Velocity Structures in the Vicinity of the Cheongcheon Dam (청천댐 주변의 천부 P파 및 S파 속도구조)

  • Park, Yeong Hwan;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.109-118
    • /
    • 2013
  • On and near the 23-m high earthen Cheongcheon dam in Boryeong City, Korea, short seismic refraction and surface-wave profiles were conducted using a 5-kg sledgehammer. From vertical and horizontal components of the seismic waves, near-surface P-wave velocities (${\nu}_p$) and S-wave velocities (${\nu}_s$) were derived by inverting first-arrival refraction times and dispersion curves of Rayleigh waves. Average ${\nu}_p$ and ${\nu}_s$ for the Jurassic sedimentary basement were determined to be 1650 and 950 m/s at a depth of 30 m directly beneath the dam and 1650 m/s and 940 m/s at a depth of 10 m at the toe of the dam, respectively. The dynamic Poisson's ratio for these strata were therefore in the range of 0.24 to 0.25, which is consistent with ratios for consolidated sedimentary strata. Near a 45-m borehole 152 m downstream from the dam crest, an SH tomogram indicates a refraction boundary with an average ${\nu}_s$ of 870 m/s at depths of 10 ~ 12 m. At this site, the overburden comprises the upper layer with relatively constant ${\nu}_p$ and ${\nu}_s$ around 500 and 200 m/s, respectively, and the lower layer in which both ${\nu}_p$ and ${\nu}_s$ increase with depth almost linearly. The dynamic Poisson's ratios for the overburden were in the range of 0.30 to 0.43.