DOI QR코드

DOI QR Code

Characterization of Deep Shear Wave Velocity Profiles in the Gimhae Plains Using the Microtremor Array Method

상시미동 표면파 분석에 의한 김해평야 퇴적층 심부 전단파 속도 결정

  • 김재휘 (창원대학교 토목공학과) ;
  • 정석호 (창원대학교 토목공학과)
  • Received : 2022.06.20
  • Accepted : 2022.07.20
  • Published : 2022.08.31

Abstract

To characterize the dynamic properties of Gimhae Plains sediments, we calculated natural frequencies using microtremor horizontal-to-vertical spectral ratios and derived shear wave velocity profiles by inversion of Rayleigh-wave dispersion curves obtained by the high frequency-wavenumber and modified spatial autocorrelation methods. Our results suggest that in this region, strong amplification of ground motion is expected in the vibration frequency (f ≥ 1 Hz). Additionally, obtained velocity profiles show that shear wave velocities are ~200 and 400 m/s for the shallow marine and old fluvial sediments, respectively. Bedrock is possibly encountered at depths of 60-100 m at most sites. We developed a simplified shear wave velocity model of shallow sediments based on the obtained profiles. Our results suggest that a large area in the Gimhae Plains could be categorized as an S6 site based on the Korean seismic design code (KDS 17 10 00).

김해평야 퇴적층의 동적 특성을 결정하기 위해 6개의 위치에서 상시미동 수평-수직비(HVSR)법으로 지반 고유진동수(f0)를 도출하고 High frequency f-k방법과 Modified Spatial Autocorrelation 방법을 적용하여 상시미동 기반 표면파 분석을 수행하였다. 레일리파 분산곡선과 지반 고유진동수를 바탕으로 역해석을 실시하여 전단파 속도 주상도를 도출하였다. 분석 결과에 의하면 김해평야 퇴적층 지역은 1hz 이상의 진동수 대역에서 상당한 규모의 지반운동 증폭이 예상된다. 천부 퇴적층은 대체로 200m/s 내외의 전단파 속도를 보이고 60m~100m 사이의 깊이에서 기반암이 존재할 것으로 추정되며, 다수의 위치에서 천부 퇴적층과 기반암 사이에 Vs=400m/s 가량의 하성 퇴적층이 존재하는 것으로 나타났다. 역해석 결과를 바탕으로 김해평야 퇴적층의 전단파 속도-깊이 모델을 도출하였으며, 본 연구에 따르면 김해평야 퇴적층 지역에서 내진설계일반(KDS 17 10 00)의 S6지반에 해당하는 위치의 면적은 상당할 것으로 예상된다.

Keywords

Acknowledgement

이 논문은 2020년 정부(과학기술정보통신부)의 재원으로 국가과학 기술연구회 개방형 데이터솔루션(DDS) 융합연구사업(No. CRC-19-01-KISTI)과 한국연구재단(No. 2020R1F1A1076539)의 지원을 받아 수행된 연구임.

References

  1. Aki, K. (1957), Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bull. Earthq. Res. Inst., 35, 415-456
  2. Bettig, B., Bard, P. Y., Scherbaum, F., Riepl, J., Cotton, F., Cornou, C., and Hatzfeld, D. (2001), Analysis of dense array noise measurements using the modified spatial auto-correlation method (SPAC): Application to the Grenoble area. Bollettino Di Geofisica Teorica Ed Applicata, 42(3-4), 281-304.
  3. Borcherdt, R. D. (1970), EFFECTS OF LOCAL GEOLOGY ON GROUND MOTION NEAR SAN FRANCISCO BAY. Bulletin of the Seismological Society of America, 60(1), 29-61.
  4. Campbell, K. W. and Bozorgnia, Y. (1994), Empirical Analysis of Strong Ground Motion from the 1992 Landers, California, Earthquake, Bulletin - Seismological Society of America, 84(3), 573-588.
  5. Capon, J. (1969), High-resolution Frequency-wavenumber Spectrum Analysis, 57(8), 1408-1418.
  6. Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.-Y., Comina, C., Cornou, C., Cox, B., Di Giulio, G., Forbriger, T., Hayashi, K., Lunedei, E., Martin, A., Mercerat, D., Ohrnberger, M., Poggi, V., Renalier, F., Sicilia, D., and Socco, V. (2018), Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project, Bulletin of Earthquake Engineering, 16(6), 2367-2420. https://doi.org/10.1007/s10518-017-0206-7
  7. Ham, A.-R., Shin, S., Kim, J.-C., Jung, S.-Y., Komal, S., and Cheong, D. (2018), "Late Quaternary Depositional Environmental Changes from the Middle Part of Nakdong River Delta Core Sediments", Journal of the Geological Society of Korea, 54.1: 47-59. https://doi.org/10.14770/jgsk.2018.54.1.47
  8. Kang, T. H.-K., Jeong, S. Y., Kim, S., Hong, S., and Choi, B. J. (2016), A Comparative Case Study of 2016 Gyeongju and 2011 Virginia Earthquakes, Journal of the Earthquake Engineering Society of Korea, 20 (7 Special), 443-451. https://doi.org/10.5000/EESK. 2016.20.7.443
  9. Kim, S.K., Kim, Y.T., and Kim, J.H. (2014), "The Guidelines for Designing Vertical Drain Boards in Deep Soft Ground", Geotechnical Engineering, Vol.30, No.5, pp.15-24.
  10. Kramer, S. L. (1996), Geotechnical Earthquake Engineering, Prentice-Hall, New Jersey.
  11. Kyung, J.-B., Lee, K., Okada, A., Watanabe, M., Suzuki, Y., and Takemura, K. (1999), "Study of Fault Characteristics by Trench Survey in the Sangchon - ri Area in the Southern Part of Yangsan Fault, Southeastern Korea", Journal of the Korean Earth Science Society, 20.1: 101-110.
  12. Lermo, J. and Chavez-Garcia, F.J. (1993), Site Effect Evaluation Using Spectral Ratios with Only One Station, Bulletin of the Seismological Society of America, 83, 1574-1594. https://doi.org/10.1785/BSSA0830051574
  13. Ministry of the Interior and Safety (2017), "9.12 Earthquake White Paper : 9.12 Earthquake and Record of 180 Days After That", Gyeonggi-do: SengGakSuimpyo.
  14. Nakamura, Y. (1989), A Method for Dynamic Charateristics Estimation of Subsurface Using Microtremor on the Ground Surface, QR RTRI, 30(1), 25-33.
  15. Nazarian, S. and Stokoe, K. H. (1986), Use of Surface Waves in Pavement Evaluation, Transportation Research Record, 3, 132-144.
  16. Park, C. B., Miller, R. D., and Xia, J. (1999), Multichannel Analysis of Surface Waves, GEOPHYSICS, 64(3), 800-808. https://doi.org/10.1190/1.1444590
  17. Park, S., Hong, T.-K., and Rah, G. (2021), Seismic Hazard Assessment for the Korean Peninsula, Bull. Seismol. Soc. Am., 111, 2696-2719, doi:10.1785/0120200261
  18. Rong, M., Fu, L., Wang, Z., Li, X., Carpenter, N. S., Woolery, E. W., and Lyu, Y. (2017), On the Amplitude Discrepancy of HVSR and Site Amplification from Strong-Motion Observations, Bulletin of the Seismological Society of America, 107(6), 2873-2884. https://doi.org/10.1785/0120170118
  19. Seed, R. B., Dickenson, S. E., and Idriss, I. M. (1991), Principal Geotechnical Aspects of the 1989 Loma Prieta Earthquake, Soils and Foundations, 31(1), 1-26. https://doi.org/10.3208/sandf1972.31.1
  20. SESAME (2004), Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations: Measurements, Processing and Interpretation (pp. 1-62), SESAME European Research Project WP12.
  21. Stanko, D., Markusic, S., Gazdek, M., Sankovic, V., Slukan, I., and Ivancic, I. (2019), Assessment of the Seismic Site Amplification in the City of Ivanec (NW Part of Croatia) Using the Microtremor HVSR Method and Equivalent-linear Site Response Analysis. Geosciences, 9(7), 312. https://doi.org/10.3390/geosciences9070312
  22. Takemiya, H. and Adam, M. (1997), SEISMIC WAVE AMPLIFICATION DUE TO TOPOGRAPHY AND GEOLOGY IN KOBE DURING HYOGO-KEN NANBU EARTHQUAKE, Doboku Gakkai Ronbunshu, 1997(570), 1-10. https://doi.org/10.2208/jscej.1997.570_1
  23. Tezcan, S. S., Kaya, E., Engin Bal, I., and Ozdemir, Z. (2002), Seismic amplification at Avcilar, Istanbul, Engineering Structures, 24(5), 661-667. https://doi.org/10.1016/S0141-0296(02)00002-0
  24. Wathelet, M. (2008), An Improved Neighborhood Algorithm: Parameter Conditions and Dynamic Scaling, Geophys. Res. Lett., 35, L09301, doi:10.1029/2008GL033256.
  25. Xu, R. and Wang, L. (2021), The Horizontal-to-vertical Spectral Ratio and its Applications, EURASIP Journal on Advances in Signal Processing, 2021(1), 75. https://doi.org/10.1186/s13634-021-00765-z
  26. Yoo, D.-G., Hong, S.-H., Lee, G.-S., Kim, J. C., Yoon, H. H., and Cheong, D. (2020), Stratigraphic Evolution of the Nakdong River Valley in Response to Late Quaternary Sea-level Changes, Marine Geology, 427 (December 2019), 106243. https://doi.org/10.1016/j.margeo.2020.106243
  27. Yoon Sung-Soo (2007), "A Recommendation of the Technique for Measurement and Analysis of Passive Surface Waves for a Reliable Dispersion Curve", Journal of the Korean Geotechnical Society, 23.2: 47-60. https://doi.org/10.7843/KGS.2007.23.2.47
  28. Zywicki, D. J. (1999), Advanced signal processing methods applied to engineering analysis of seismic surface waves, Ph.D. Thesis, Georgia Institute of Technology, 228p.