Browse > Article
http://dx.doi.org/10.7843/kgs.2022.38.8.17

Characterization of Deep Shear Wave Velocity Profiles in the Gimhae Plains Using the Microtremor Array Method  

Kim, Jae Hwi (Dept. of Civil Eng, Changwon National Univ.)
Jeong, Seokho (Dept. of Civil Eng, Changwon National Univ.)
Publication Information
Journal of the Korean Geotechnical Society / v.38, no.8, 2022 , pp. 17-27 More about this Journal
Abstract
To characterize the dynamic properties of Gimhae Plains sediments, we calculated natural frequencies using microtremor horizontal-to-vertical spectral ratios and derived shear wave velocity profiles by inversion of Rayleigh-wave dispersion curves obtained by the high frequency-wavenumber and modified spatial autocorrelation methods. Our results suggest that in this region, strong amplification of ground motion is expected in the vibration frequency (f ≥ 1 Hz). Additionally, obtained velocity profiles show that shear wave velocities are ~200 and 400 m/s for the shallow marine and old fluvial sediments, respectively. Bedrock is possibly encountered at depths of 60-100 m at most sites. We developed a simplified shear wave velocity model of shallow sediments based on the obtained profiles. Our results suggest that a large area in the Gimhae Plains could be categorized as an S6 site based on the Korean seismic design code (KDS 17 10 00).
Keywords
Ground motion; HFK; HVSR; Microtremor Array Method; MSPAC; Seismic hazard; Surface wave inversion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Campbell, K. W. and Bozorgnia, Y. (1994), Empirical Analysis of Strong Ground Motion from the 1992 Landers, California, Earthquake, Bulletin - Seismological Society of America, 84(3), 573-588.
2 Capon, J. (1969), High-resolution Frequency-wavenumber Spectrum Analysis, 57(8), 1408-1418.
3 Ham, A.-R., Shin, S., Kim, J.-C., Jung, S.-Y., Komal, S., and Cheong, D. (2018), "Late Quaternary Depositional Environmental Changes from the Middle Part of Nakdong River Delta Core Sediments", Journal of the Geological Society of Korea, 54.1: 47-59.   DOI
4 Kang, T. H.-K., Jeong, S. Y., Kim, S., Hong, S., and Choi, B. J. (2016), A Comparative Case Study of 2016 Gyeongju and 2011 Virginia Earthquakes, Journal of the Earthquake Engineering Society of Korea, 20 (7 Special), 443-451. https://doi.org/10.5000/EESK. 2016.20.7.443   DOI
5 Kramer, S. L. (1996), Geotechnical Earthquake Engineering, Prentice-Hall, New Jersey.
6 Ministry of the Interior and Safety (2017), "9.12 Earthquake White Paper : 9.12 Earthquake and Record of 180 Days After That", Gyeonggi-do: SengGakSuimpyo.
7 Park, C. B., Miller, R. D., and Xia, J. (1999), Multichannel Analysis of Surface Waves, GEOPHYSICS, 64(3), 800-808. https://doi.org/10.1190/1.1444590   DOI
8 Stanko, D., Markusic, S., Gazdek, M., Sankovic, V., Slukan, I., and Ivancic, I. (2019), Assessment of the Seismic Site Amplification in the City of Ivanec (NW Part of Croatia) Using the Microtremor HVSR Method and Equivalent-linear Site Response Analysis. Geosciences, 9(7), 312. https://doi.org/10.3390/geosciences9070312   DOI
9 Tezcan, S. S., Kaya, E., Engin Bal, I., and Ozdemir, Z. (2002), Seismic amplification at Avcilar, Istanbul, Engineering Structures, 24(5), 661-667. https://doi.org/10.1016/S0141-0296(02)00002-0   DOI
10 Yoo, D.-G., Hong, S.-H., Lee, G.-S., Kim, J. C., Yoon, H. H., and Cheong, D. (2020), Stratigraphic Evolution of the Nakdong River Valley in Response to Late Quaternary Sea-level Changes, Marine Geology, 427 (December 2019), 106243. https://doi.org/10.1016/j.margeo.2020.106243   DOI
11 Zywicki, D. J. (1999), Advanced signal processing methods applied to engineering analysis of seismic surface waves, Ph.D. Thesis, Georgia Institute of Technology, 228p.
12 Park, S., Hong, T.-K., and Rah, G. (2021), Seismic Hazard Assessment for the Korean Peninsula, Bull. Seismol. Soc. Am., 111, 2696-2719, doi:10.1785/0120200261   DOI
13 Takemiya, H. and Adam, M. (1997), SEISMIC WAVE AMPLIFICATION DUE TO TOPOGRAPHY AND GEOLOGY IN KOBE DURING HYOGO-KEN NANBU EARTHQUAKE, Doboku Gakkai Ronbunshu, 1997(570), 1-10. https://doi.org/10.2208/jscej.1997.570_1   DOI
14 Wathelet, M. (2008), An Improved Neighborhood Algorithm: Parameter Conditions and Dynamic Scaling, Geophys. Res. Lett., 35, L09301, doi:10.1029/2008GL033256.   DOI
15 Xu, R. and Wang, L. (2021), The Horizontal-to-vertical Spectral Ratio and its Applications, EURASIP Journal on Advances in Signal Processing, 2021(1), 75. https://doi.org/10.1186/s13634-021-00765-z   DOI
16 Yoon Sung-Soo (2007), "A Recommendation of the Technique for Measurement and Analysis of Passive Surface Waves for a Reliable Dispersion Curve", Journal of the Korean Geotechnical Society, 23.2: 47-60.   DOI
17 Kyung, J.-B., Lee, K., Okada, A., Watanabe, M., Suzuki, Y., and Takemura, K. (1999), "Study of Fault Characteristics by Trench Survey in the Sangchon - ri Area in the Southern Part of Yangsan Fault, Southeastern Korea", Journal of the Korean Earth Science Society, 20.1: 101-110.
18 Seed, R. B., Dickenson, S. E., and Idriss, I. M. (1991), Principal Geotechnical Aspects of the 1989 Loma Prieta Earthquake, Soils and Foundations, 31(1), 1-26. https://doi.org/10.3208/sandf1972.31.1   DOI
19 Aki, K. (1957), Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bull. Earthq. Res. Inst., 35, 415-456
20 Bettig, B., Bard, P. Y., Scherbaum, F., Riepl, J., Cotton, F., Cornou, C., and Hatzfeld, D. (2001), Analysis of dense array noise measurements using the modified spatial auto-correlation method (SPAC): Application to the Grenoble area. Bollettino Di Geofisica Teorica Ed Applicata, 42(3-4), 281-304.
21 SESAME (2004), Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations: Measurements, Processing and Interpretation (pp. 1-62), SESAME European Research Project WP12.
22 Nakamura, Y. (1989), A Method for Dynamic Charateristics Estimation of Subsurface Using Microtremor on the Ground Surface, QR RTRI, 30(1), 25-33.
23 Borcherdt, R. D. (1970), EFFECTS OF LOCAL GEOLOGY ON GROUND MOTION NEAR SAN FRANCISCO BAY. Bulletin of the Seismological Society of America, 60(1), 29-61.
24 Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.-Y., Comina, C., Cornou, C., Cox, B., Di Giulio, G., Forbriger, T., Hayashi, K., Lunedei, E., Martin, A., Mercerat, D., Ohrnberger, M., Poggi, V., Renalier, F., Sicilia, D., and Socco, V. (2018), Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project, Bulletin of Earthquake Engineering, 16(6), 2367-2420. https://doi.org/10.1007/s10518-017-0206-7   DOI
25 Kim, S.K., Kim, Y.T., and Kim, J.H. (2014), "The Guidelines for Designing Vertical Drain Boards in Deep Soft Ground", Geotechnical Engineering, Vol.30, No.5, pp.15-24.
26 Nazarian, S. and Stokoe, K. H. (1986), Use of Surface Waves in Pavement Evaluation, Transportation Research Record, 3, 132-144.
27 Lermo, J. and Chavez-Garcia, F.J. (1993), Site Effect Evaluation Using Spectral Ratios with Only One Station, Bulletin of the Seismological Society of America, 83, 1574-1594.   DOI
28 Rong, M., Fu, L., Wang, Z., Li, X., Carpenter, N. S., Woolery, E. W., and Lyu, Y. (2017), On the Amplitude Discrepancy of HVSR and Site Amplification from Strong-Motion Observations, Bulletin of the Seismological Society of America, 107(6), 2873-2884. https://doi.org/10.1785/0120170118   DOI