• Title/Summary/Keyword: 폴리올레핀

Search Result 100, Processing Time 0.029 seconds

The Preparation of Perfluorinated Organometallic Compounds via Vinyllithium Compounds of Alicyclic 1,2-Dihalopolyfluoroolefins (Alicyclic 1,2-디할로폴리플루오르올레핀으로 부터 비닐리튬 화합물과 Perfluorinated 유기금속화합물의 합성)

  • Joseph D. Park;Choi Sam Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.286-297
    • /
    • 1973
  • Polyfluorocycloalkenyllithium compounds have been prepared by exchange reaction with 1,2-dihalopolyfluorocycloalkenes and alkyllithium reagents. Their reactions with mercuric, arsenic and dimethyl germanium halides are described and the chemistry of these compounds discussed.

  • PDF

Packaging Industry of Thailand (Hot Issue - 태국의 포장산업 실태)

  • (사)한국포장협회
    • The monthly packaging world
    • /
    • s.271
    • /
    • pp.89-103
    • /
    • 2015
  • 본 고는 "재활용이 가능한 고차단성 폴리올레핀 유니 소재를 활용하여 온실가스를 감축하는 친환경식품포장 개발" 프로젝트의 일환으로 "태국의 식품포장산업 조사"를 토대하여 편집한 것이며, 태국 카쎄싸국립대학교 포장재료기술학과가 태국의 식품포장산업의 현황 및 동향을 파악하여 태국의 식품포장에 주로 사용되는 유리, 플라스틱, 종이 등 주요 포장재료에 관한 정보를 얻는 데 있다. 이 자료에서는 가능한 연성 및 경성의 플라스틱포장, 종이포장, 유리포장의 생산현황을 담고 있다. 또한 포장용기의 생산량 및 추이가 태국 전역 및 주 생산 지역 전반의 차원에서 다루어지고 있으며, 포장 재료간 경쟁력도 언급한다. 제공하는 자료들은 현장조사, 설문, 인터뷰, 각종 서신, 그리고 각종 출판 자료를 바탕으로 한 것이다. 요약하면, 생산량을 기준으로 보면 주요 식품포장 재료들 중 종이, 플라스틱, 유리, 금속의 순으로 사용되었다. 종이용기 중에서는 골판지 용기가 여타 형태의 종이용기보다 많이 생산되었다. 플라스틱 포장에 있어서는 플라스틱 병과 유연성 파우치의 두 형태가 돋보였는데, 이는 대부분 음료업계에서 사용된다. 유리병도 태국의 음료업계에서 주로 사용되는데, 특히 재활용 용기로 활용된다. 지난 10년간 금속용기는 유연성 파우치와 아셉틱 카톤 팩으로 대체되어 생산량이 대폭 줄었다. 본 고에서는 한국식품연구원 박형우 책임연구원의 자료 제공을 바탕으로 태국 포장산업 실태에 대해 살펴보도록 한다.

  • PDF

Synthesis of a Super Hydrophobic Violet Dye for Pure Polyolefin(PP/UHMWPE) Fibers (순수 폴리올레핀(PP/UHMWPE) 소재용 초소수성 보라색 염료의 합성)

  • Kim, Taekyeong;Lee, Changwhan
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.165-171
    • /
    • 2013
  • A new monoazo violet dye optimized for polyolefin fibers such as polypropylene and ultra high molecular weight polyethylene fibers was synthesized and its dyeability was investigated. Two hexyl groups were introduced to coupler, 2,5-dimethoxyaniline, in order to increase hydrophobicity of the dye. The maximum absorption wavelength was appeared at 580nm, which meant that the dye showed violet color. From the dyeing results at various conditions, the optimum dyeing was determined as $130^{\circ}C$ for 1 hour with 5% owf of dyes. The good fastness ratings to washing, rubbing were obtained showing at least 4 for both fibers. Light fastness was acceptable for polypropylene fibers giving ratings 3~4. However, relatively poor light fastness was obtained in case of ultra high molecular weight polyethylene fibers showing ratings 2.

Methanol-to-Olefin Conversion over UZM-9 Zeolite: Effect of Transition Metal Ion Exchange on its Deactivation (UZM-9 제올라이트에서 메탄올의 올레핀으로 전환반응: 전이금속 이온 교환이 촉매의 활성저하에 미치는 영향)

  • Kim, Sun Jung;Jang, Hoi-Gu;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.181-188
    • /
    • 2013
  • The effect of transition metal ion exchange into UZM-9 zeolite with LTA framework on its deactivation in methanol-to-olefin (MTO) conversion was discussed. The ion exchange of copper, cobalt, nickel, and iron did not induce any notable change in the crystallinity, crystal morphology, and acidity of UZM-9. The small cage entrance of UZM-9 caused the high selectivity to lower olefins in the MTO conversion, while its large cages allowed the rapid further cyclecondensation of active intermediates, polymethylbenzenes including hexamethylbenzene, resulting in a rapid deactivation. The UZM-9 containing copper and cobalt ions showed considerably slow deactivations. The interaction between transition metal ions and polymethylbenzene cation radicals, the active intermediates, generated in the MTO conversion stabilized the radicals and slowed down the deactivation of UZM-9.

Modified Atmosphere Packaging of Minimally Processed Cut Garlic (최소가공된 절단 마늘의 환경기체조절포장)

  • Kwon, Min-Ji;Shin, Yong-Jae;Lee, Dong-Sun;An, Duck-Soon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.17 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • There is a need in food industry to store minimally processed garlic for long time to have it be used just at the time of demand for final product processing. Optimal modified atmosphere packaging is expected to slow down the quality change extending its storage life. In order to find optimal packaging conditions, plastic films of different gas permeability properties (low density polyethylene (LDPE) $30{\mu}m$, polyolefin $50{\mu}m$ (PD 900), polyolefin $20{\mu}m$ (PD 941)) were used for packaging 400 g of minimally processed garlic. Perforated LDPE packages were prepared as control. The packaged products were stored at $1{\pm}1^{\circ}C$ for 52 days. Package treatments were compared in weight loss, decay, surface color, hardness and soluble solid content. While control package had normal atmosphere of air, LDPE, PD 900 and PD 941 packages attained internal concentration of $O_2$ 4.6% / $CO_2$ 12%, $O_2$ 0.9% / $CO_2$ 21% and $O_2$ 0.5% / $CO_2$ 13% after 45 days, respectively. Control packaging had rapid weight loss with high mold decay and great surface color change in 45 days. In PD 900 film packages of lowest gas permeability, the fresh-cut garlic could be stored without mold decay for 52 days. Except control packaging, there were no significant differences in surface color, hardness and soluble solid content among package treatments.

  • PDF

Current Status and Future Research Directions of Separator Membranes for Lithium-Ion Rechargeable Batteries (리튬이차전지용 분리막 이해 및 최신 연구 동향)

  • Kim, Jung-Hwan;Lee, Sang-Young
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.337-350
    • /
    • 2016
  • Lithium-ion rechargeable batteries (LIBs) have garnered increasing attention with the rapid advancements in portable electronics, electric vehicles, and grid-scale energy storage systems which are expected to drastically change our future lives. This review describes a separator membrane, one of the key components in LIBs, in terms of porous structure and physicochemical properties, and its recent development trends are followed. The separator membrane is a kind of porous membrane that is positioned between a cathode and an anode. Its major functions involve electrical isolation between the electrodes while serving as an ionic transport channel that is filled with liquid electrolyte. The separator membranes are not directly involved in redox reactions of LIBs, however, their aforementioned roles significantly affect performance and safety of LIBs. A variety of research approaches have been recently conducted in separator membranes in order to further reinforce battery safeties and also widen chemical functionalities. This review starts with introduction to commercial polyolefin separators that are currently most widely used in LIBs. Based on this understanding, modified polyolefin separators, nonwoven separators, ceramic composite separators, and chemically active separators will be described, with special attention to their relationship with future research directions of advanced LIBs.

Changes in Light Transmittance of Greenhouse Covering Materials and Cucumber Growth as Affected by Particulate Matter (미세먼지 발생에 의한 온실 피복재의 광투과율 감소 및 오이 생육 변화)

  • Inseo Hong;Yoomin Ha;Yurina Kwack
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.312-318
    • /
    • 2023
  • In recent years, fine and yellow dust pollution has become serious in Korea and has negatively affected crop production. Particulate matter (PM) adheres to greenhouse coverings, and it reduces the amount of solar radiation transmitted into a greenhouse. A reduction in light transmittance can have a direct effect on crop photosynthesis and an indirect effect on air temperature in a greenhouse, which can lead to differences in crop yield. The objectives of this study were to investigate the changes in light transmittance of different cover materials by PM and to determine the changes in cucumber growth in a greenhouse due to reduced light transmittance. We measured the changes in light transmittance of polyethylene (PE) and polyolefin (PO) films in the PM generation chambers. Also, cucumber plants were cultivated in a greenhouse with four different light reduction treatments (0, 10, 20, and 30% reduction of light transmittance). The initial light transmittance of PO film was higher than that of PE film and the decrease in light transmittance of PO film due to PM was less than that of PE film. The vegetative growth of cucumber was promoted under the reduced light transmittance treatments; however, the yield of cucumber was highest in the control (0% reduction of light transmittance). From the results, we confirmed that PO film was less PM adhesion and that cucumber yield during the spring season can be reduced by the reduction in light transmittance due to PM.

Effect of Mesoporous TiO2 in Facilitated Olefin Transport Membranes Containing Ag Nanoparticles (나노입자가 포함된 촉진수송 분리막에서의 메조기공 티타늄산화물의 영향)

  • Kim, Sang Jin;Jung, Jung Pyu;Kim, Dong Jun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.398-405
    • /
    • 2015
  • Facilitated transport is considered to be a possible solution to simultaneously improve permeability and selectivity, which is challenging in normal polymeric membranes based on solution-diffusion transport only. We investigated the effect of adding mesoporous $TiO_2$ ($m-TiO_2$) upon the separation performance of facilitated olefin transport membranes comprising poly(vinyl pyrrolidone), Ag nanoparticles, and 7,7,8,8-tetracyanoquinodimethane as the polymer matrix, olefin carrier, and electron acceptor, respectively. In particular, $m-TiO_2$ was prepared by means of a facile, mass-producible method using poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft copolymer as the template. The crystal phase of $m-TiO_2$ consisted of an anatase/rutile mixture, of crystallite size approximately 16 nm as determined by X-ray diffraction. The introduction of $m-TiO_2$ increased the membrane diffusivity, thereby increasing the mixed-gas permeance from 1.6 to 16.0 GPU ($1GPU=10^{-6}cm^3$(STP)/($s{\times}cm^2{\times}cmHg$), and slightly decreased the propylene/propane selectivity from 45 to 37. However, both the mixed-gas permeance and selectivity of the membrane containing $m-TiO_2$ rapidly decreased over time, whereas the membrane without $m-TiO_2$ had more stable long-term performance. This difference might be attributed to specific chemical interactions between $TiO_2$ and Ag nanoparticles, causing Ag to lose activity as an olefin carrier.

Preparation and Characterization of Polypropylene/Montmorillionite Nanocomposites (폴리프로필렌/몬모릴로나이트 나노복합체의 제조 및 물성)

  • Lee Sang-Uk;Oh In-Hwan;Lee Jae Heung;Choi Kil-Yeong;Lee Sung-Goo
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.271-276
    • /
    • 2005
  • Polypropylene (PP)/montmorillonite (MMT) nanocomposites were prepared by melt mixing methods. MMT modified by dimethyl hydrogenated tallow 2-ethylhexyl ammonium (Cloisite 15A) was used. Polyolefine oligomer with telechelic OH groups was used as a compatibilizer. The degree of dispersion of MMT in the nanocomposites was measured by X-ray diffractometer and transmission electron microscope (TEM) images. MMT was well exfoliated when the contents of compatibilizer was 25 phr. The thermal stability that observed by thermogravimetric analysis (TGA) increased with the contents of MMT increased up to 5 phr. The complex viscosities and storage moduli of PP nanocomposites enhanced as the contents of compatibilizer decreased and those of MMT increased.

Characterization of Polyolefin Separator Support Membranes with Hydrophilic Coatings (폴리올레핀계 다공성 세퍼레이터 지지체 막의 친수 코팅에 따른 특성 평가)

  • Park, Yun Hwan;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.92-103
    • /
    • 2017
  • In this study, electrochemical performance of the hydrophilized separator for the lithium ion battery is studied. The polyolefin based material used as the separator for the lithium ion battery is hydrophobic, and the electrolytic solution using a carbonate-based organic solvent is hydrophilic. Therefore, the polyolefin separator is hydrophilized using various hydrophilic polymers because lithium ion battery uses an aqueous electrolyte solution. In order to evaluate change of the coated separator, the performances of separator in terms of surface morphology, porosity and the wettability are investigated. Finally, the resistance and the ionic conductivity of separator coated with lithium ion are measured to evaluate the performance of lithium ion battery. Separator coated with PMVE shows good hydrophilicity and excellent ionic conductivity because the porosity of the separator is maintained. We can confirm that this property makes potential candidates for lithium ion battery.