DOI QR코드

DOI QR Code

폴리올레핀계 다공성 세퍼레이터 지지체 막의 친수 코팅에 따른 특성 평가

Characterization of Polyolefin Separator Support Membranes with Hydrophilic Coatings

  • 박윤환 (경상대학교 나노신소재융합공학과 공학연구원) ;
  • 남상용 (경상대학교 나노신소재융합공학과 공학연구원)
  • Park, Yun Hwan (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 투고 : 2017.02.19
  • 심사 : 2017.02.28
  • 발행 : 2017.02.28

초록

본 연구에서는 리튬이온전지용 친수화된 세퍼레이터의 전기화학적 성능에 대한 연구를 진행하였다. 리튬이온전지용 분리막으로 사용되는 폴리올레핀 소재는 소수성이고, 카보네이트 계열의 유기용매를 사용하는 전해액은 친수성을 가진다. 따라서 리튬이온전지는 수계전해액을 사용하기 때문에 폴리올레핀계 분리막에 다양한 친수성 고분자를 도입하여 친수화 처리하였다. 코팅된 세퍼레이터의 변화를 평가하기 위해, 표면 관찰, 코팅시간에 따른 친수화도, 다공성, 젖음성에 대한 특성평가를 수행하였다. 최종적으로 리튬이온이 코팅된 세퍼레이터의 저항과., 이온전도도를 측정하여 리튬이온전지 성능평가를 진행하였다. PMVE로 코팅한 세퍼레이터의 친수화 정도가 우수하며, 세퍼레이터의 기공이 잘 유지되어 우수한 이온전도도를 나타냄으로써 이차전지 배터리에 적용을 위한 잠재성을 가짐을 확인하였다.

In this study, electrochemical performance of the hydrophilized separator for the lithium ion battery is studied. The polyolefin based material used as the separator for the lithium ion battery is hydrophobic, and the electrolytic solution using a carbonate-based organic solvent is hydrophilic. Therefore, the polyolefin separator is hydrophilized using various hydrophilic polymers because lithium ion battery uses an aqueous electrolyte solution. In order to evaluate change of the coated separator, the performances of separator in terms of surface morphology, porosity and the wettability are investigated. Finally, the resistance and the ionic conductivity of separator coated with lithium ion are measured to evaluate the performance of lithium ion battery. Separator coated with PMVE shows good hydrophilicity and excellent ionic conductivity because the porosity of the separator is maintained. We can confirm that this property makes potential candidates for lithium ion battery.

키워드

참고문헌

  1. F. B. Dias, L. Plomp, and J. B. Veldhuis, "Trends in polymer electrolytes for secondary lithium batteries", J. Power Sources, 88, 2 (2000). https://doi.org/10.1016/S0378-7753(99)00504-2
  2. G. Nazri and G. Pistoia, "Lithium batteries: science and technology", pp. 3-37, Springer Science & Business Media (2008).
  3. R. Wagner, N. Preschitschek, S. Passerini, J. Leker, and M. Winter, "Current research trends and prospects among the various materials and designs used in lithium-based batteries", J. Appl. Electrochem., 43, 5 (2013).
  4. Y. M. Lee, C. H. Lee, H. B. Park, J. W. Rhim, S. Y. Ha, J. S. Kang, and S. Y. Nam, "Separators for Li-ion secondary batteries", Membr. J., 14, 4 (2004).
  5. J. H. Kim and S. Y. Lee, "Current status and future research directions of separator membranes for lithium-ion rechargeable batteries", Membr. J., 26, 5 (2016).
  6. Y. M. Lee and B. Oh, "The role of microporous separator in lithium ion secondary battery", Membr. J., 7, 3 (1997).
  7. D. Ihm, J. Noh, and J. Kim, "Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery", J. Power Sources, 109, 2 (2002).
  8. M. Endo, C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, "Recent development of carbon materials for Li ion batteries", Carbon, 38, 2 (2000).
  9. M. A. Jung, D. H. Yu, M. J. Koh, J. W. Rhim, H. S. Byun, M. S. Seo, and S. Y. Nam, "Preparation and characterization of PVdF microporous membranes with PEG additive for rechargeable battery", Membr. J., 18, 1 (2008).
  10. D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, H. O. Yoo, J. M. Kim, M. S. Seo, and S. Y. Nam, "Preparation and characterization of PVdF-HFP microporous membranes for Li-ion rechargeable battery", Membr. J., 17, 4 (2007).
  11. D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, C. H. Jeong, Y. M. Lee, M. S. Seo, and S. Y. Nam, "Preparation and characterization of microporous PVdF membrane for Li-ion rechargeable battery", Membr. J., 17, 3 (2007).
  12. J. Park, "Principles and applications of lithium secondary batteries", pp. 9-16, John Wiley & Sons (2012).
  13. M. Ryou, Y. M. Lee, J. Park, and J. W. Choi, "Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries", Adv. Mater., 23, 27 (2011).
  14. D. T. Wong, C. Wang, K. M. Beers, J. B. Kortright, and N. P. Balsara, "Mesoporous block copolymer morphology studied by contrast-matched resonant Soft X-ray scattering", Macromolecules, 45, 22 (2012).
  15. J. Y. Kim, Y. Lee, and D. Y. Lim, "Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery", Electrochim. Acta, 54, 14 (2009).
  16. G. Li, Z. Li, P. Zhang, H. Zhang, and Y. Wu, "Research on a gel polymer electrolyte for Li-ion batteries", Pure Appl. Chem., 80, 11 (2008).
  17. M. Ryou, J. Kim, and I. Lee, "Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries", Adv. Mater., 25, 11 (2013).
  18. D. H. Kim, H. H. Cho, B. S. Lee, B. P. Hong, S. Y. Lee, S. Y. Nam, M. S. Seo, J. W. Rhim, and H. S. Byun, "Studies on the secondary battery application of the surface fluorinated microporous PE separator membranes", Membr. J., 18, 1 (2008).
  19. J. H. Kim, H. S. Ahn, and J. H. Kim, "Vacuum stripping of $CO_2$ from aqueous MEA solutions using PDMS-PE composite membrane contactor", Membr. J., 22, 1 (2012).
  20. S. H. Yeo, H. Y. Son, M. S. Seo, T. W. Roh, G. C. Kim, H. L. Kim, and H. C. Lee, "Fabrication and evaluation of $Si_3N_4$-coated organic/inorganic hybrid separators for lithium-ion batteries", J. Korean Electrochem Soc., 15, 1 (2012). https://doi.org/10.5229/JKES.2012.15.1.001
  21. J. S. Lee, M. C. Yoo, B. J. Chang, J. H. Kim, H. Kang, and S. B. Lee, "Preparation of anion exchange membranes for electrodialysis by impregnating porous polyethylene films with cross-linked poly(vinylbenzyl ammonium chloride)s, Membr. J., 18, 2 (2008).
  22. P. Arora and Z. Zhang, "Battery separators", Chem. Rev., 104, 10 (2004).
  23. M. M. Atabaki and R. Kovacevic, "Graphene composites as anode materials in lithium-ion batteries", Electron. Mater. Lett., 9, 2 (2013).
  24. M. Ryou, Y. M. Lee, and K. Y. Cho, "A gel polymer electrolyte based on initiator-free photopolymerization for lithium secondary batteries", Electrochim. Acta, 60, 15 (2012).
  25. M. J. Jeong and J. D. Lee, "Electrochemical performance of hollow silicon/carbon anode materials for lithium ion battery", Appl. Chem. Eng., 27, 4 (2016).
  26. J. Y. Park, M. J. Jeong, and J. D. Lee, "Electrochemical characteristics of silicon/carbon composites for anode materials of lithium ion batteries", Appl. Chem. Eng., 26, 1 (2015). https://doi.org/10.14478/ace.2015.1008
  27. X. Liang, Y. Yang, X. Jin, and J. Cheng, "Polyethylene Oxide-Coated Electrospun Polyimide Fibrous Seperator for High-Performance lithium-Ion Battery", J. Mater. Sci. Technol., 32, 3 (2016).
  28. Y. Lee, M. Ryou, M. Seo, J. W. Choi, and Y. M. Lee, "Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li-ion batteries", Electrochim. Acta, 113, 15 (2013).
  29. W. Chen, L. Shi, and H. Zhou, "Water-Based Organic-Inorganic Hybrid Coating for a High-Performance Separator", ACS Sustain Chem. Eng., 4, 7 (2016).
  30. J. Y. Bae, M. A. Park, B. H. Ra, B. H. Kim, and Y. K. Choi, "A study on the improvement of the thermal stability of PE separator for lithium secondary battery application using poly(meta-phenylene isophthalamiade)", Polymer, 37, 1 (2013).
  31. L. Qie, W. Chen, and Z. Wang, "Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability", Adv. Mater., 24, 15 (2012).
  32. T. Cho, T. Sakai, and S. Tanase, "Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery", Electrochem. Solid-State Lett., 10, 7 (2007).