DOI QR코드

DOI QR Code

Methanol-to-Olefin Conversion over UZM-9 Zeolite: Effect of Transition Metal Ion Exchange on its Deactivation

UZM-9 제올라이트에서 메탄올의 올레핀으로 전환반응: 전이금속 이온 교환이 촉매의 활성저하에 미치는 영향

  • Kim, Sun Jung (School of Applied Chemical Engineering, Chonnam National University) ;
  • Jang, Hoi-Gu (School of Applied Chemical Engineering, Chonnam National University) ;
  • Seo, Gon (School of Applied Chemical Engineering, Chonnam National University)
  • 김선중 (전남대학교 응용화학공학부) ;
  • 장회구 (전남대학교 응용화학공학부) ;
  • 서곤 (전남대학교 응용화학공학부)
  • Received : 2012.10.24
  • Accepted : 2012.11.19
  • Published : 2013.04.01

Abstract

The effect of transition metal ion exchange into UZM-9 zeolite with LTA framework on its deactivation in methanol-to-olefin (MTO) conversion was discussed. The ion exchange of copper, cobalt, nickel, and iron did not induce any notable change in the crystallinity, crystal morphology, and acidity of UZM-9. The small cage entrance of UZM-9 caused the high selectivity to lower olefins in the MTO conversion, while its large cages allowed the rapid further cyclecondensation of active intermediates, polymethylbenzenes including hexamethylbenzene, resulting in a rapid deactivation. The UZM-9 containing copper and cobalt ions showed considerably slow deactivations. The interaction between transition metal ions and polymethylbenzene cation radicals, the active intermediates, generated in the MTO conversion stabilized the radicals and slowed down the deactivation of UZM-9.

구리, 코발트, 니켈, 철의 전이금속 이온을 교환한 LTA 골격구조의 UZM-9 제올라이트에서 메탄올이 저급올레핀으로 전환(Methanol-to-Olefin: MTO)되는 반응을 조사하여 전이금속 이온 교환이 촉매의 활성저하에 미치는 영향을 고찰하였다. 전이금속 이온 교환에 따른 UZM-9의 결정구조, 결정 모양, 세공구조, 산성도 변화는 크지 않았다. UZM-9은 둥지 입구가 작아 MTO 반응에서 저급올레핀에 대한 선택도가 높지만, 둥지가 커서 활성중간체인 헥사메틸벤젠 등 폴리메틸벤젠이 쉽게 고리화축합되어 다고리 방향족화합물이 많이 생성되므로 활성저하가 빠르다. 그러나 구리와 코발트 이온을 교환하면 MTO 반응에서 UZM-9의 활성저하가 느려졌다. MTO 반응 중 생성되는 폴리메틸벤젠 양이온 라디칼과 전이금속 이온의 상호작용으로 활성중간체가 안정화되어 활성저하가 느려졌다.

Keywords

References

  1. Stocker, M., "Methanol-to-Hydrocarbons: Catalytic Materials and Their Behavior," Micropor. Mesopor. Mater., 29, 3-48(1999). https://doi.org/10.1016/S1387-1811(98)00319-9
  2. Keil, F. J., "Methanol-to-Hydrocarbons: Process Technology," Micropor. Mesopor. Mater., 29, 49-66(1999). https://doi.org/10.1016/S1387-1811(98)00320-5
  3. Sanfilippo, D. and Miracca, I., "Dehydrogenation of Paraffins: Synergies between Catalyst Design and Reactor Engineering," Catal. Today, 111, 133-139(2006). https://doi.org/10.1016/j.cattod.2005.10.012
  4. Mier, D., Aguayo, A. T., Gayubo, A. G., Olazar, M. and Bilbao, J., "Synergies in the Production of Olefins by Combined Cracking of n-Butane and Methanol on a HZSM-5 Zeolite Catalyst," Chem. Eng. J., 160, 760-769(2010). https://doi.org/10.1016/j.cej.2010.04.016
  5. Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T. and Kvisle, S., "Recent Advancements in Ethylene and Propylene Production using the UOP/Hydro MTO Process," Catal. Today, 106, 103-107(2005). https://doi.org/10.1016/j.cattod.2005.07.178
  6. Olsbye, U., Svelle, S., Bjorgen, M., Beato, P., Janssens, T. V. W., Joensen, F., Bordiga, S. and Lillerud, K. P., "Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity," Angew. Chem. Int. Ed., 51, 5810-5831(2012). https://doi.org/10.1002/anie.201103657
  7. Jacobs, P. A. and Martens, J. A., "Exploration of the Void Size and Structure of Zeolites and Molecular Sieves using Chemical Reactions," Pure Appl. Chem., 58, 1329-1338(1986). https://doi.org/10.1351/pac198658101329
  8. Wilson, S. and Barger, P., "The Characteristics of SAPO-34 Which Influence the Conversion of Methanol to Light Olefins," Micropor. Mesopor. Mater., 29, 117-126(1999). https://doi.org/10.1016/S1387-1811(98)00325-4
  9. Chen, D., Moljord, K., Fuglerud, T. and Holmen, A., "The Effect of Crystal Size of SAPO-34 on the Selectivity and Deactivation of the MTO Reaction," Micropor. Mesopor. Mater., 29, 191-203(1999). https://doi.org/10.1016/S1387-1811(98)00331-X
  10. Song, W., Fu, H. and Haw, J. F., "Selective Synthesis of Methylnaphthalenes in HSAPO-34 Cages and Their Function as Reaction Centers in Methanol-to-Olefin Catalysis," J. Phys. Chem. B, 105, 12839-12843(2001). https://doi.org/10.1021/jp012400u
  11. Song, W., Haw, J. F., Nicholas, J. B. and Heneghan, C. S., "Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34," J. Am. Chem. Soc., 122, 10726-10727(2000). https://doi.org/10.1021/ja002195g
  12. Seo, G. and Min, B. G., "Mechanism of Methanol Conversion over Zeolite and Molecular Sieve Catalysts," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 44, 329-339(2006).
  13. Lesthaeghe, D., Horre, A., Waroquier, M., Marin, G. B. and Speybroeck, V. V., "Theoretical Insights on Methylbenzene Side-Chain Growth in ZSM-5 Zeolites for Methanol-to-Olefin Conversion," Chem. Eur. J., 15, 10803-10808(2009). https://doi.org/10.1002/chem.200901723
  14. Lee, H. S., Lee, Y., Park, S.-S., Chae, H.-J., Jeong, S.-Y. and Lee, D. H., "Hydrodynamic Characteristics of Cold-Bed Circulating Fluidized Beds for the Methanol to Olefins Process," Korean J. Chem. Eng., 27, 1328-1332(2010). https://doi.org/10.1007/s11814-010-0187-6
  15. Haw, J. F. and Marcus, D. M., "Well-defined (Supra)molecular Structures in Zeolite Methanol-to-Olefin Catalysis," Top. Catal., 34, 41-48(2005). https://doi.org/10.1007/s11244-005-3798-0
  16. Park, J. W., Lee, J. Y., Kim, K. S., Hong, S. B. and Seo, G., "Effect of Cage Shape and Size of 8-Membered Ring Molecular Sieves on Their Deactivation in Methanol-to-Olefin (MTO) Reactions," Appl. Catal. A: Gen., 339, 36-44(2008). https://doi.org/10.1016/j.apcata.2008.01.005
  17. Kang, M. and Inui, T., "Effect of Decrease in Number of Acid Sites Located on the External Surface of Ni-SAPO-34 Crystal-line Catalyst by the Mechanochemical Method," Catal. Lett., 53, 171-176(1998). https://doi.org/10.1023/A:1019030627908
  18. Dubois, D. R., Obrzut, D. L., Liu, J., Thundimadathil, J., Adekkanattu, P. M., Guin, J. A., Punnoose, A. and Seehra, M. S., "Conversion of Methanol to Olefins over Cobalt-, Manganeseand Nickel-Incorporated SAPO-34 Molecular Sieves," Fuel Process. Technol., 83, 203-218(2003). https://doi.org/10.1016/S0378-3820(03)00069-9
  19. Hereijgers, B. P. C., Bleken, F., Nilsen, M. H., Svelle, S., Lillerud, K.-P., Bjorgen, M., Weckhuysen, B. M. and Olsbye, U., "Product Shape Selectivity Dominates the Methanol-to-Olefin (MTO) Reaction over H-SAPO-34 Catalysts," J. Catal., 264, 77-87(2009). https://doi.org/10.1016/j.jcat.2009.03.009
  20. Kim, S. J., Park, J. W., Lee, K. Y., Seo, G., Song, M. K. and Jeong, S.-Y., "Enhanced Catalytic Performance of Copper-Exchanged SAPO-34 Molecular Sieve in Methanol-to-Olefin Reaction," J. Nanosci. Nanotechnol., 10, 147-157(2010). https://doi.org/10.1166/jnn.2010.1506
  21. Lewis, G. J., Miller, M. A., Moscoso, J. G., Wilson, B. A., Knight, L. M. and Wilson, S. T., "Experimental Charge Density Matching Approach to Zeolite Synthesis," Stud. Surf. Sci. Catal., 154A, 364-372(2004).
  22. http://www.iza-structure.org/database, Data Base of Zeolite Structure.
  23. Carl, P. J. and Larsen, S. C., "Variable-Temperature Electron Paramagnetic Resonance Studies of Copper-Exchanged Zeolites," J. Catal., 182, 208-218(1999). https://doi.org/10.1006/jcat.1998.2330
  24. M'Ramadj, O., Zhang, B., Li, D., Wang, X. and Lu, G., "Catalytic Combustion of Methane over High Copper-Loading ZSM-5 Catalysts," J. Natur. Gas Chem., 16, 258-265(2007). https://doi.org/10.1016/S1003-9953(07)60057-7
  25. Fu, H., Song, W. and Haw, J. F., "Polycyclic Aromatic Formation in HSAPO-34 during Methanol-to-Olefin Catalysis: ex situ Characterization after Cryogenic Grinding," Catal. Lett., 76, 89-94(2001). https://doi.org/10.1023/A:1016719924539
  26. Haw, J. F., Song, W., Marcus, D. M. and Nicholas, J. B., "The Mechanism of Methanol to Hydrocarbon Catalysis," Acc. Chem. Res., 36, 317-326(2003). https://doi.org/10.1021/ar020006o
  27. Arstad, B. and Kolboe, S., "The Reactive of Molecules Trapped within the SAPO-34 Cavities in the Methanol-to-Hydrocarbons Reaction," J. Am. Chem. Soc., 123, 8137-8138(2001). https://doi.org/10.1021/ja010668t
  28. Sassi, A., Wildman, M. A., Ahn, H. J., Prasad, P., Nicholas, J. B. and Haw, J. F., "Methylbenzene Chemistry on Zeolite HBeta: Multiple Insights into Methanol-to-Olefin Catalysis," J. Phys. Chem. B, 106, 2294-2303(2002). https://doi.org/10.1021/jp013392k
  29. Olsbye, U., Bjørgen, M., Svelle, S., Lillerud, K.-P. and Kolboe, S., "Mechanistic Insight into the Methanol-to-Hydrocarbons Reaction," Catal. Today, 106, 108-111(2005). https://doi.org/10.1016/j.cattod.2005.07.135
  30. Kim, S. J., Jang, H.-G., Lee, J. K., Min, H.-K., Hong, S. B. and Seo, G., "Direct Observation of Hexamethylbenzenium Radical Cations Generated during Zeolite Methanol-to-Olefin Catalysis: an ESR Study," Chem. Commun., 47, 9498-9500(2011). https://doi.org/10.1039/c1cc13153b

Cited by

  1. Methanol-to-Olefin Conversion over Zeolite Catalysts: Active Intermediates and Deactivation vol.17, pp.3-4, 2013, https://doi.org/10.1007/s10563-013-9157-4
  2. Conversion of DME to Light Olefins over Mesoporous SAPO-34 Catalyst Prepared by Carbon Nanotube Template vol.25, pp.1, 2014, https://doi.org/10.14478/ace.2013.1093
  3. 다양한 입자크기와 산성도를 지닌 MTT 제올라이트의 합성 및 촉매특성 연구 vol.56, pp.4, 2018, https://doi.org/10.9713/kcer.2018.56.4.600