Browse > Article
http://dx.doi.org/10.9713/kcer.2013.51.2.181

Methanol-to-Olefin Conversion over UZM-9 Zeolite: Effect of Transition Metal Ion Exchange on its Deactivation  

Kim, Sun Jung (School of Applied Chemical Engineering, Chonnam National University)
Jang, Hoi-Gu (School of Applied Chemical Engineering, Chonnam National University)
Seo, Gon (School of Applied Chemical Engineering, Chonnam National University)
Publication Information
Korean Chemical Engineering Research / v.51, no.2, 2013 , pp. 181-188 More about this Journal
Abstract
The effect of transition metal ion exchange into UZM-9 zeolite with LTA framework on its deactivation in methanol-to-olefin (MTO) conversion was discussed. The ion exchange of copper, cobalt, nickel, and iron did not induce any notable change in the crystallinity, crystal morphology, and acidity of UZM-9. The small cage entrance of UZM-9 caused the high selectivity to lower olefins in the MTO conversion, while its large cages allowed the rapid further cyclecondensation of active intermediates, polymethylbenzenes including hexamethylbenzene, resulting in a rapid deactivation. The UZM-9 containing copper and cobalt ions showed considerably slow deactivations. The interaction between transition metal ions and polymethylbenzene cation radicals, the active intermediates, generated in the MTO conversion stabilized the radicals and slowed down the deactivation of UZM-9.
Keywords
MTO Conversion; UZM-9 Zeolite; Transition Metal; Ion Exchange; Deactivation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Stocker, M., "Methanol-to-Hydrocarbons: Catalytic Materials and Their Behavior," Micropor. Mesopor. Mater., 29, 3-48(1999).   DOI   ScienceOn
2 Keil, F. J., "Methanol-to-Hydrocarbons: Process Technology," Micropor. Mesopor. Mater., 29, 49-66(1999).   DOI   ScienceOn
3 Sanfilippo, D. and Miracca, I., "Dehydrogenation of Paraffins: Synergies between Catalyst Design and Reactor Engineering," Catal. Today, 111, 133-139(2006).   DOI   ScienceOn
4 Mier, D., Aguayo, A. T., Gayubo, A. G., Olazar, M. and Bilbao, J., "Synergies in the Production of Olefins by Combined Cracking of n-Butane and Methanol on a HZSM-5 Zeolite Catalyst," Chem. Eng. J., 160, 760-769(2010).   DOI   ScienceOn
5 Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T. and Kvisle, S., "Recent Advancements in Ethylene and Propylene Production using the UOP/Hydro MTO Process," Catal. Today, 106, 103-107(2005).   DOI   ScienceOn
6 Olsbye, U., Svelle, S., Bjorgen, M., Beato, P., Janssens, T. V. W., Joensen, F., Bordiga, S. and Lillerud, K. P., "Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity," Angew. Chem. Int. Ed., 51, 5810-5831(2012).   DOI   ScienceOn
7 Jacobs, P. A. and Martens, J. A., "Exploration of the Void Size and Structure of Zeolites and Molecular Sieves using Chemical Reactions," Pure Appl. Chem., 58, 1329-1338(1986).   DOI   ScienceOn
8 Wilson, S. and Barger, P., "The Characteristics of SAPO-34 Which Influence the Conversion of Methanol to Light Olefins," Micropor. Mesopor. Mater., 29, 117-126(1999).   DOI   ScienceOn
9 Chen, D., Moljord, K., Fuglerud, T. and Holmen, A., "The Effect of Crystal Size of SAPO-34 on the Selectivity and Deactivation of the MTO Reaction," Micropor. Mesopor. Mater., 29, 191-203(1999).   DOI   ScienceOn
10 Song, W., Fu, H. and Haw, J. F., "Selective Synthesis of Methylnaphthalenes in HSAPO-34 Cages and Their Function as Reaction Centers in Methanol-to-Olefin Catalysis," J. Phys. Chem. B, 105, 12839-12843(2001).   DOI   ScienceOn
11 Song, W., Haw, J. F., Nicholas, J. B. and Heneghan, C. S., "Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34," J. Am. Chem. Soc., 122, 10726-10727(2000).   DOI   ScienceOn
12 Seo, G. and Min, B. G., "Mechanism of Methanol Conversion over Zeolite and Molecular Sieve Catalysts," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 44, 329-339(2006).   과학기술학회마을
13 Lesthaeghe, D., Horre, A., Waroquier, M., Marin, G. B. and Speybroeck, V. V., "Theoretical Insights on Methylbenzene Side-Chain Growth in ZSM-5 Zeolites for Methanol-to-Olefin Conversion," Chem. Eur. J., 15, 10803-10808(2009).   DOI   ScienceOn
14 Lee, H. S., Lee, Y., Park, S.-S., Chae, H.-J., Jeong, S.-Y. and Lee, D. H., "Hydrodynamic Characteristics of Cold-Bed Circulating Fluidized Beds for the Methanol to Olefins Process," Korean J. Chem. Eng., 27, 1328-1332(2010).   DOI   ScienceOn
15 Haw, J. F. and Marcus, D. M., "Well-defined (Supra)molecular Structures in Zeolite Methanol-to-Olefin Catalysis," Top. Catal., 34, 41-48(2005).   DOI   ScienceOn
16 Park, J. W., Lee, J. Y., Kim, K. S., Hong, S. B. and Seo, G., "Effect of Cage Shape and Size of 8-Membered Ring Molecular Sieves on Their Deactivation in Methanol-to-Olefin (MTO) Reactions," Appl. Catal. A: Gen., 339, 36-44(2008).   DOI   ScienceOn
17 Kim, S. J., Park, J. W., Lee, K. Y., Seo, G., Song, M. K. and Jeong, S.-Y., "Enhanced Catalytic Performance of Copper-Exchanged SAPO-34 Molecular Sieve in Methanol-to-Olefin Reaction," J. Nanosci. Nanotechnol., 10, 147-157(2010).   DOI   ScienceOn
18 Kang, M. and Inui, T., "Effect of Decrease in Number of Acid Sites Located on the External Surface of Ni-SAPO-34 Crystal-line Catalyst by the Mechanochemical Method," Catal. Lett., 53, 171-176(1998).   DOI
19 Dubois, D. R., Obrzut, D. L., Liu, J., Thundimadathil, J., Adekkanattu, P. M., Guin, J. A., Punnoose, A. and Seehra, M. S., "Conversion of Methanol to Olefins over Cobalt-, Manganeseand Nickel-Incorporated SAPO-34 Molecular Sieves," Fuel Process. Technol., 83, 203-218(2003).   DOI   ScienceOn
20 Hereijgers, B. P. C., Bleken, F., Nilsen, M. H., Svelle, S., Lillerud, K.-P., Bjorgen, M., Weckhuysen, B. M. and Olsbye, U., "Product Shape Selectivity Dominates the Methanol-to-Olefin (MTO) Reaction over H-SAPO-34 Catalysts," J. Catal., 264, 77-87(2009).   DOI   ScienceOn
21 Lewis, G. J., Miller, M. A., Moscoso, J. G., Wilson, B. A., Knight, L. M. and Wilson, S. T., "Experimental Charge Density Matching Approach to Zeolite Synthesis," Stud. Surf. Sci. Catal., 154A, 364-372(2004).
22 http://www.iza-structure.org/database, Data Base of Zeolite Structure.
23 Carl, P. J. and Larsen, S. C., "Variable-Temperature Electron Paramagnetic Resonance Studies of Copper-Exchanged Zeolites," J. Catal., 182, 208-218(1999).   DOI   ScienceOn
24 M'Ramadj, O., Zhang, B., Li, D., Wang, X. and Lu, G., "Catalytic Combustion of Methane over High Copper-Loading ZSM-5 Catalysts," J. Natur. Gas Chem., 16, 258-265(2007).   DOI   ScienceOn
25 Fu, H., Song, W. and Haw, J. F., "Polycyclic Aromatic Formation in HSAPO-34 during Methanol-to-Olefin Catalysis: ex situ Characterization after Cryogenic Grinding," Catal. Lett., 76, 89-94(2001).   DOI   ScienceOn
26 Olsbye, U., Bjørgen, M., Svelle, S., Lillerud, K.-P. and Kolboe, S., "Mechanistic Insight into the Methanol-to-Hydrocarbons Reaction," Catal. Today, 106, 108-111(2005).   DOI   ScienceOn
27 Haw, J. F., Song, W., Marcus, D. M. and Nicholas, J. B., "The Mechanism of Methanol to Hydrocarbon Catalysis," Acc. Chem. Res., 36, 317-326(2003).   DOI   ScienceOn
28 Arstad, B. and Kolboe, S., "The Reactive of Molecules Trapped within the SAPO-34 Cavities in the Methanol-to-Hydrocarbons Reaction," J. Am. Chem. Soc., 123, 8137-8138(2001).   DOI   ScienceOn
29 Sassi, A., Wildman, M. A., Ahn, H. J., Prasad, P., Nicholas, J. B. and Haw, J. F., "Methylbenzene Chemistry on Zeolite HBeta: Multiple Insights into Methanol-to-Olefin Catalysis," J. Phys. Chem. B, 106, 2294-2303(2002).   DOI   ScienceOn
30 Kim, S. J., Jang, H.-G., Lee, J. K., Min, H.-K., Hong, S. B. and Seo, G., "Direct Observation of Hexamethylbenzenium Radical Cations Generated during Zeolite Methanol-to-Olefin Catalysis: an ESR Study," Chem. Commun., 47, 9498-9500(2011).   DOI   ScienceOn