Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.398

Effect of Mesoporous TiO2 in Facilitated Olefin Transport Membranes Containing Ag Nanoparticles  

Kim, Sang Jin (Department of Chemical and Biomolecular Engineering, Yonsei University)
Jung, Jung Pyu (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Dong Jun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.25, no.5, 2015 , pp. 398-405 More about this Journal
Abstract
Facilitated transport is considered to be a possible solution to simultaneously improve permeability and selectivity, which is challenging in normal polymeric membranes based on solution-diffusion transport only. We investigated the effect of adding mesoporous $TiO_2$ ($m-TiO_2$) upon the separation performance of facilitated olefin transport membranes comprising poly(vinyl pyrrolidone), Ag nanoparticles, and 7,7,8,8-tetracyanoquinodimethane as the polymer matrix, olefin carrier, and electron acceptor, respectively. In particular, $m-TiO_2$ was prepared by means of a facile, mass-producible method using poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft copolymer as the template. The crystal phase of $m-TiO_2$ consisted of an anatase/rutile mixture, of crystallite size approximately 16 nm as determined by X-ray diffraction. The introduction of $m-TiO_2$ increased the membrane diffusivity, thereby increasing the mixed-gas permeance from 1.6 to 16.0 GPU ($1GPU=10^{-6}cm^3$(STP)/($s{\times}cm^2{\times}cmHg$), and slightly decreased the propylene/propane selectivity from 45 to 37. However, both the mixed-gas permeance and selectivity of the membrane containing $m-TiO_2$ rapidly decreased over time, whereas the membrane without $m-TiO_2$ had more stable long-term performance. This difference might be attributed to specific chemical interactions between $TiO_2$ and Ag nanoparticles, causing Ag to lose activity as an olefin carrier.
Keywords
facilitated transport; silver nanoparticle; $TiO_2$; olefin carrier; electron acceptor;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 T. Hirakawa and P. V. Kamat, "Charge separation and catalytic activity of Ag@ $TiO_2$ core-shell composite clusters under UV-irradiation", J. Am. Chem. Soc., 127, 3928 (2005).   DOI
2 I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, and L. M. Liz-Marzan, "One-pot synthesis of Ag@ $TiO_2$ core-shell nanoparticles and their layer-by-layer assembly", Langmuir, 16, 2731 (2000).   DOI
3 C. Zhu, S. Guo, Y. Zhai, and S. Dong, "Layerby- layer self-assembly for constructing a graphene/ platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker", Langmuir, 26, 7614 (2010).   DOI
4 D. Li, Y. Cui, K. Wang, Q. He, X. Yan, and J. Li, "Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers", Adv. Funct. Mater., 17, 3134 (2007).   DOI
5 J. Geng, K. Li, K. Y. Pu, D. Ding, and B. Liu, "Conjugated polymer and gold nanoparticle co loaded plga nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging", Small, 8, 2421 (2012).   DOI
6 C. Jiang, S. Markutsya, Y. Pikus, and V. V. Tsukruk, "Freely suspended nanocomposite membranes as highly sensitive sensors", Nat. Mater., 3, 721 (2004).   DOI
7 B.-S. Kim, J.-M. Qiu, J.-P. Wang, and T. A. Taton, "Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers", Nano Lett., 5, 1987 (2005).   DOI
8 Y. Ding, M. Chen, and J. Erlebacher, "Metallic mesoporous nanocomposites for electrocatalysis", J. Am. Chem. Soc., 126, 6876 (2004).   DOI
9 V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, "Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer", Nano Lett., 7, 3065 (2007).   DOI
10 I. I. Slowing, B. G. Trewyn, S. Giri, and V. Y. Lin, "Mesoporous silica nanoparticles for drug delivery and biosensing applications", Adv. Funct. Mater., 17, 1225 (2007).   DOI
11 W. J. Rieter, K. M. Pott, K. M. Taylor, and W. Lin, "Nanoscale coordination polymers for platinum- based anticancer drug delivery", J. Am. Chem. Soc., 130, 11584 (2008).   DOI
12 B. G. Trewyn, S. Giri, I. I. Slowing, and V. S.-Y. Lin, "Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems", Chem. Commun., 3236 (2007).
13 Y. Teow, A. Ahmad, J. Lim, and B. Ooi, "Preparation and characterization of PVDF/$TiO_2$ mixed matrix membrane via in situ colloidal precipitation method", Desalination, 295, 61 (2012).   DOI
14 M. Delcea, H. Mohwald, and A. G. Skirtach, "Stimuli-responsive LbL capsules and nanoshells for drug delivery", Adv. Drug Delivery Rev., 63, 730 (2011).   DOI
15 D. Astruc, E. Boisselier, and C. Ornelas, "Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine", Chem. Rev., 110, 1857 (2010).   DOI
16 R. Singh and N. Zheludev, "Materials: Superconductor photonics", Nat. Photonics, 8, 679 (2014).   DOI
17 S. Jessie Lue, J. Y. Chen, and J. Ming Yang, "Crystallinity and stability of poly (vinyl alcohol)- fumed silica mixed matrix membranes", J. Macromol. Sci. Part B Phys., 47, 39 (2007).   DOI
18 L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, "Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review", Desalination, 308, 15 (2013).   DOI
19 T. B. Kang and S. R. Hong, "Separation of Hydrogen-Nitrogen Gases by PDMS-NaA zeolite Mixed Matrix Membranes", Membr. J., 25, 295 (2015).   DOI
20 J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du, G. P. Robertson, and M. D. Guiver, "Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)", J. Membr. Sci., 346, 280 (2010).   DOI
21 Y. S. Kang, S. W. Kang, H. Kim, J. H. Kim, J. Won, C. K. Kim, and K. Char, "Interaction with olefins of the partially polarized surface of silver nanoparticles activated by p-benzoquinone and its implications for facilitated olefin transport", Adv. Mater., 19, 475 (2007).   DOI
22 C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, "High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations", J. Membr. Sci., 389, 34 (2012).   DOI
23 Y. I. Park. H. R. Song, S. E. Nam, Y. K. Hwang, J. S. Chang, and U. H. Lee, "Preparation and characterization of mixed-matrix membranes containing MIL-100(Fe) for gas separation", Membr. J., 23, 432 (2013).   DOI
24 S. W. Kang, K. Char, and Y. S. Kang, "Novel application of partially positively charged silver nanoparticles for facilitated transport in olefin/paraffin separation membranes", Chem. Mater., 20, 1308 (2008).   DOI
25 I. S. Chae, S. W. Kang, J. Y. Park, Y. G. Lee, J. H. Lee, J. Won, and Y. S. Kang, "Surface Energy-level tuning of silver nanoparticles for facilitated olefin transport", Angew. Chem. Int. Ed., 123, 3038 (2011).   DOI
26 M. Zhou, D. Korelskiy, P. Ye, M. Grahn, and J. Hedlund, "A uniformly oriented MFI membrane for improved $CO_2$ separation", Angew. Chem. Int. Ed., 53, 3492 (2014).   DOI
27 E. H. Cho, K. B. Kim, and J. W. Rhim, "Transport properties of PEBAX blended membranes with peg and glutaraldehyde for $SO_2$ and other gases", Polymer(KOREA), 38, 687 (2014).
28 D.-H. Kim, H.-S. Im, M.-S. Kim, B.-S. Lee, B.-S. Lee, S.-W. Yoon, B.-S. Kim, Y.-I. Park, S.-I. Cheong, and J.-W. Rhim, "Study on the gas permeation behaviors of surface fluorinated polysulfone membranes", Polymer(KOREA), 33, 537 (2009).
29 T. Zhou, L. Luo, S. Hu, S. Wang, R. Zhang, H. Wu, Z. Jiang, B. Wang, and J. Yang, "Janus composite nanoparticle-incorporated mixed matrix membranes for $CO_2$ separation", J. Membr. Sci., 489, 1 (2015).   DOI
30 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390-400 (2008).   DOI
31 J. W. Rhim, C. S. Lee, E. H. Cho, S. Y. Ha, and J. T. Chung, "Multi-stage Process study of pei-pdms hollow fiber composite membrane modules for $H_2$/$CO_2$ mixed gas separation", Membr. J., 23, 1 (2013).
32 Y. Kong, H. Du, J. Yang, D. Shi, Y. Wang, Y. Zhang, and W. Xin, "Study on polyimide/$TiO_2$ nanocomposite membranes for gas separation", Desalination, 146, 49 (2002).   DOI
33 S. Matteucci, V. A. Kusuma, D. Sanders, S. Swinnea, and B. D. Freeman, "Gas transport in $TiO_2$ nanoparticle-filled poly(1-trimethylsilyl-1-propyne)", J. Membr. Sci., 307, 196 (2008).   DOI
34 F. Moghadam, M. R. Omidkhah, E. Vasheghani- Farahani, M. Z. Pedram, and F. Dorosti, "The effect of $TiO_2$ nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes", Sep. Purif. Technol., 77, 128 (2011).   DOI
35 T. Yang and T. S. Chung, "High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor", Int. J. Hydrogen Energy, 38, 229 (2013).   DOI
36 H. Y. Zhao, Z. Jin, H. M. Su, J. L. Zhang, X. D. Yao, H. J. Zhao, and G. S. Zhu, "Target synthesis of a novel porous aromatic framework and its highly selective separation of $CO_2/CH_4$", Chem. Commun., 49, 2780 (2013).   DOI
37 S. H. Ahn, D. J. Kim, W. S. Chi, and J. H. Kim, "Hierarchical double-shell nanostructures of $TiO_2$ nanosheets on $SnO_2$ hollow spheres for high-efficiency, solid-state, dye-sensitized solar cells", Adv. Func. Mater., 24, 5037 (2014).   DOI
38 T.-S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007).   DOI
39 P. Burmann, B. Zornoza, C. Tellez, and J. Coronas, "Mixed matrix membranes comprising MOFs and porous silicate fillers prepared via spin coating for gas separation", Chem. Eng. Sci., 107, 66 (2014).   DOI
40 D. K. Roh, S. J. Kim, W. S. Chi, J. K. Kim, and J. H. Kim, "Dual-functionalized mesoporous $TiO_2$ hollow nanospheres for improved $CO_2$ separation membranes", Chem. Commun., 50, 5717 (2014).   DOI
41 S. H. Ahn, D. J. Kim, W. S. Chi, and J. H. Kim, "One-dimensional hierarchical nanostructures of $TiO_2$ nanosheets on $SnO_2$ nanotubes for high efficiency solid-state dye-sensitized solar cells", Adv. Mater., 25, 4893 (2013).   DOI
42 W. S. Chi, S. J. Kim, S. J. Lee, Y. S. Bae, and J. H. Kim, "Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach", Chem. Sus. Chem., 8, 650 (2015).   DOI
43 G. H. Hong, D. Song, I. S. Chae, J. H. Oh, and S. W. Kang, "Highly permeable poly (ethylene oxide) with silver nanoparticles for facilitated olefin transport", RSC Adv., 4, 4905 (2014).   DOI