Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.337

Current Status and Future Research Directions of Separator Membranes for Lithium-Ion Rechargeable Batteries  

Kim, Jung-Hwan (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST))
Lee, Sang-Young (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Membrane Journal / v.26, no.5, 2016 , pp. 337-350 More about this Journal
Abstract
Lithium-ion rechargeable batteries (LIBs) have garnered increasing attention with the rapid advancements in portable electronics, electric vehicles, and grid-scale energy storage systems which are expected to drastically change our future lives. This review describes a separator membrane, one of the key components in LIBs, in terms of porous structure and physicochemical properties, and its recent development trends are followed. The separator membrane is a kind of porous membrane that is positioned between a cathode and an anode. Its major functions involve electrical isolation between the electrodes while serving as an ionic transport channel that is filled with liquid electrolyte. The separator membranes are not directly involved in redox reactions of LIBs, however, their aforementioned roles significantly affect performance and safety of LIBs. A variety of research approaches have been recently conducted in separator membranes in order to further reinforce battery safeties and also widen chemical functionalities. This review starts with introduction to commercial polyolefin separators that are currently most widely used in LIBs. Based on this understanding, modified polyolefin separators, nonwoven separators, ceramic composite separators, and chemically active separators will be described, with special attention to their relationship with future research directions of advanced LIBs.
Keywords
lithium-ion rechargeable batteries; battery separators; porous membranes; electrochemical performance; safety;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 E.-S. Choi and S.-Y. Lee, "Particle size-dependent, tunable porous structure of a $SiO_{2}$/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery", J. Mater. Chem., 21, 14747 (2011).   DOI
2 J.-R. Lee, J.-H. Won, J. H. Kim, K. J. Kim, and S.-Y. Lee, "Evaporation-induced self-assembled silica colloidal particle-assisted nanoporous structural evolution of poly(ethylene terephthalate) nonwoven composite separators for high-safety/high-rate lithium-ion batteries", J. Power Sources, 216, 42 (2012).   DOI
3 J. W. Fergus, "Ceramic and polymeric solid electrolytes for lithium-ion batteries", J. Power Sources, 195, 4554 (2010).   DOI
4 S. Augustin, V. Hennige, G. Hijrpel, and C. Hying, "Ceramic but flexible: new ceramic membrane foils for fuel cells and batteries", Desalination, 146, 23 (2002).   DOI
5 M. Armand and J.-M. Tarascon, "Building better batteries", Nature, 451, 652 (2008).   DOI
6 B. Dunn, H. Kamath, and J.-M. Tarascon, "Electrical energy storage for the grid: A battery of choices", Science, 334, 928 (2011).   DOI
7 P. Arora and Z. Zhang, "Battery separators", Chem. Rev., 104, 4419 (2004).   DOI
8 S. S. Zhang, "A review on the separators of liquid electrolyte Li-ion batteries", J. Power Sources, 164, 351 (2007).   DOI
9 X. Huang, "Separator technologies for lithium-ion batteries", J. Solid State Electrochem., 15, 649 (2011).   DOI
10 H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, "A review of recent developments in membrane separators for rechargeable lithium-ion batteries", Energy Environ. Sci., 7, 3857 (2014).   DOI
11 Y. M. Lee and B. Oh, "The role of microporous separator in lithium ion secondary battery", Membr. J., 7, 123 (1997).
12 J.-H. Kim, J.-H. Kim, K.-H. Choi, H. K. Yu, J. H. Kim, J. S. Lee, and S.-Y. Lee, "Inverse opal-inspired, nanoscaffold battery separators: a new membrane opportunity for high-performance energy storage systems", Nano Lett., 14, 4438 (2014).   DOI
13 S.-J. Chun, E.-S. Choi, E.-H. Lee, J. H. Kim, S.-Y. Lee, and S.-Y. Lee, "Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries", J. Mater. Chem., 22, 16618 (2012).   DOI
14 J.-H. Kim, J.-H. Kim, E.-S. Choi, H. K. Yu, J. H. Kim, Q. Wu, S.-J. Chun, S.-Y. Lee, and S.-Y. Lee, "Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries", J. Power Sources, 242, 533 (2013).   DOI
15 S. Yoo, J.-H. Kim, M. Shin, H. Park, J.-H. Kim, S.-Y. Lee, and S. Park, "Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation", Sci. Adv., 1, e1500101 (2015).
16 Y. M. Lee, C. H. Lee, H. B. Park, J. W. Rhim, S. Y. Ha, J. S. Kang, and S. Y. Nam, "Separators for Li-ion secondary batteries", Membr. J., 14, 263 (2004).
17 J.-M. Kim, C. Kim, S. Yoo, J.-H. Kim, J.-H. Kim, J.-M. Lim, S. Park, and S.-Y. Lee, "Agarose-biofunctionalized, dual-electrospun heteronano fiber mats: toward metal-ion chelating battery separator membranes", J. Mater. Chem. A, 3, 10687 (2015).   DOI
18 J.-H. Kim, J.-H. Kim, J.-M. Kim, Y.-G. Lee, and S.-Y. Lee, "Superlattice crystals-mimic, flexible/functional ceramic membranes: beyond polymeric battery separators", Adv. Energy Mater., 5, 1500954 (2015).   DOI
19 Y. T. Jeong, J. Ahn, and C. H. Lee, "Preparation and characterization of sulfonated poly (arylene ether sulfone) random copolymer-polyolefin porefilling separators with metal ion trap capability for Li-ion secondary battery", Membr. J., 26, 310 (2016).   DOI
20 J. Saunier, F. Alloin, J. Y. Sanchez, and B. Barrie, "Plasticized microporous poly(vinylidene fluoride) separators for lithium-ion Batteries. I. swelling behavior of dense membranes with respect to a liquid electrolyte-characterization of the swelling equilibrium", J. Polym. Sci.: Part B: Polym. Phys., 42, 532 (2004).   DOI
21 W.-H. Seol, Y. M. Lee, and J.-K. Park, "Preparation and characterization of new microporous stretched membrane for lithium rechargeable battery", J. Power Sources, 163, 247 (2006).   DOI
22 D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, C. H. Jeong, Y. M. Lee, M. S. Seo, and S. Y. Nam, "Preparation and characterization of microporous PVdF membrane for Li-ion rechargeable battery", Membr. J., 17, 233 (2007).
23 M. A. Jeong, D. H. Yu, M. J. Koh, J. W. Rhim, H. S. Byun, M. S. Seo, and S. Y. Nam, "Preparation and characterization of PVdF microporous membranes with PEG additive for rechargeble battery", Membr. J., 18, 84 (2008).
24 W. Pu, X. He, L. Wang, C. Jiang, and C. Wan, "Preparation of PVDF-HFP microporous membrane for Li-ion batteries by phase inversion", J. Membr. Sci., 272, 11 (2006).   DOI
25 A. Subramania, N. T. K. Sundaram, A. R. S, Priya, and G. V. Kumar, "Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery", J. Membr. Sci., 294, 8 (2007).   DOI
26 D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, H.-O. Yoo, J. M. Kim, M. S. Seo, and S. Y. Nam, "Preparation and characterization of PVdF-HFP microporous membranes for Li-ion rechargeable battery", Membr. J., 17, 359 (2007).
27 H. Wu, D. Zhuo, D. Kong, and Y. Cui, "Improving battery safety by early detection of internal shorting with a bifunctional separator", Nat. Commun., 5, 5193 (2014).   DOI
28 D. Lin, D. Zhuo, Y. Liu, and Y. Cui, "All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator", J. Am. Chem. Soc., 138, 11044 (2016).   DOI
29 G. Venugopal, J. Moore, J. Howard, and S. Pendalwar, "Characterization of microporous separators for lithium-ion batteries", J. Power Sources, 77, 34 (1999).   DOI
30 S. S. Zhang, M. H. Ervin, K. Xu, and T. R. Jow, "Microporous poly(acrylonitrile-methyl methacrylate) membranes a separator of rechargeable lithium battery", Electrochim. Acta, 49, 3339 (2004).   DOI
31 W. Pu, X. He, L. Wang, Z. Tian, C. Jiang, and C. Wan, "Preparation of P(AN-MMA) microporous membrane for Li-ion batteries by phase inversion", J. Membr. Sci., 280, 6 (2006).   DOI
32 J. M. Ko, B. G. Min, D.-W. Kim, K. S. Ryu, K. M. Kim, Y. G. Lee, and S. H. Chang, "Thin-film type Li-ion battery, using a polyethylene separator grafted with glycidyl methacrylate", Electrochim. Acta, 50, 367 (2004).   DOI
33 J. Y. Lee, Y. M. Lee, B. Bhattacharya, Y.-C. Nho, and J.-K. Park, "Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries", Electrochim. Acta, 54, 4312 (2009).   DOI
34 J. Y. Kim, Y. Lee, and D. Y. Lim, "Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery", Electrochim. Acta, 54, 3714 (2009).   DOI
35 J. Y. Kim and D. Y. Lim, "Surface-modified membrane as a separator for lithium-ion polymer battery", Energies, 3, 866 (2010).   DOI
36 D. H. Kim, H. I. Cho, B. S. Lee, B. P. Hong, S. Y. Lee, S. Y. Nam, M. S. Seo, J. W. Rhim, and H. S. Byun. "Studies on the secondary battery application of the surface fluorinated microporous PE separator membranes", Membr. J., 18, 75 (2008).
37 M.-H. Ryou, Y. M. Lee, J.-K. Park, and J. W. Choi, "Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries", Adv. Mater., 23, 3066 (2011).   DOI
38 L.-F. Fang, J.-L. Shi, B.-K. Zhu, and L.-P. Zhu, "Facile introduction of polyether chains onto polypropylene separators and its application in lithium ion batteries", J. Membr. Sci., 448, 143 (2013).   DOI
39 B. Cheng, X. Jiao, and W. Kang, "Studies on grafting of acrylic acid onto polypropylene meltblown nonwovens induced by electron-beam preirradiation", J. Appl. Polym. Sci., 102, 4971 (2006).   DOI
40 K. Singha, S. Maity, M. Singha, P. Paul, and D. P. Gon, "Effects of fiber diameter distribution of nonwoven fabrics on its properties", Int. J. Textile Sci., 1, 7 (2012).
41 P. Kritzer, "Nonwoven support material for improved separators in Li-polymer batteries", J. Power Sources, 161, 1335 (2006).   DOI
42 W. Yi, Z. Huaiyu, H. Jian, L. Yun, and Z. Shushu, "Wet-laid non-woven fabric for separator of lithium-ion battery", J. Power Sources, 189, 616 (2009).   DOI
43 X. Huang, "Performance evaluation of a non-woven lithium ion battery separator prepared through a paper-making process", J. Power Sources, 256, 96 (2014).   DOI
44 T. H. Kim, "Current R&D trend of nanofiber membranes", Membr. J., 22, 395 (2012).
45 S. W. Choi, S. M. Jo, W. S. Lee, and Y.-R. Kim, "An electrospun poly(vinylidene fluroride) nanofibrous membrane and its battery application", Adv. Mater., 15, 2027 (2003).   DOI
46 J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, "Characterization and properties of PVdF-HFP-based fibrous polymer electrolyte membrane prepared by electrospinning", J. Electrochem. Soc., 152, A295 (2005).   DOI
47 X. Li, G. Cheruvally, J.-K. Kim, J.-W. Choi, J.-H. Ahn, K.-W. Kim, and H.-J. Ahn, "Polymer electrolytes based on an electrospun poly(vinylidenefluoride-co-hexafluoropropylene) membrane for lithium batteries", J. Power Sources, 167, 491 (2007).   DOI
48 T. H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase, and T. Sakai, "Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery", J. Power Sources, 181, 155 (2008).   DOI
49 W. Jiang, Z. Liu, Q. Kong, J. Yao, C. Zhang, P. Han, and G. Cui, "A high temperature operating nanofibrous polyimide separator in Li-ion battery", Solid State Ionics, 232, 44 (2013).   DOI
50 Y.-E. Miao, G.-N. Zhu, H. Hou, Y.-Y. Xia, and T. Liu, "Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries", J. Power Sources, 226, 82 (2013).   DOI
51 J. Ding, Y. Kong, P. Li, and J. Yang, "Polyimide/poly(ethylene terephthalate) composite membrane by electrospinning for nonwoven separator for lithium-ion battery", J. Electrochem. Soc., 159, A1474 (2012).   DOI
52 K. M. Kim, N.-G. Park, K. S. Ryu, and S. H. Chang, "Characteristics of PVdF-HFP/$TiO_{2}$ composite membrane electrolytes prepared by phase inversion and conventional casting methods", Electrochim. Acta, 51, 5636 (2006).   DOI
53 J.-A. Choi, S. H. Kim, and D.-W. Kim, "Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators", J. Power Sources, 195, 6192 (2010).   DOI
54 H.-S. Jeong and S.-Y. Lee, "Closely packed $SiO_{2}$ nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries", J. Power Sources, 196, 6716 (2011).   DOI
55 A. C. Lopes, R. Goncalves, C. M. Costa, A. M. Fonseca, G. Botelho, I. C. Neves, and S. Lanceros-Mendez, "Effect of zeolite content in the electrical, mechanical and thermal degradation response of poly(vinylidene fluoride)/NaY zeolite composites", J. Nanosci. Nanotechnol., 12, 6804 (2012).   DOI
56 J. Nunes-Pereira, C. M. Costa, R. E. Sousa, A. V. Machado, M. M. Silva, and S. Lanceros-Méndez, "Li-ion battery separator membranes based on barium titanate and poly(vinylidene fluoride-co-trifluoroethylene): filler size and concentration effects", Electrochim. Acta, 117, 276 (2014).   DOI