• 제목/요약/키워드: 폴리머 어블레이션

검색결과 11건 처리시간 0.03초

폴리머 미세가공을 위한 레이저 어블레이션 모델링 (Modeling of Polymer Ablation with Excimer Lasers)

  • 윤경구;방세윤
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.60-68
    • /
    • 2005
  • To investigate the effects of beam focusing in the etching of polymers with short pulse Excimer lasers, a polymer etching model of SSB's is combined with a beam focusing model. Through the numerical simulation, it was found that in the high laser fluence region, SSB model considering both photochemical and thermal contribution is considered to be suitable to predict the etched hole shape than a simple photochemical etching model. The average temperature distribution into the substance obtained by assuming 1-D heat transfer is found to be fairly similar to the fluence distribution on the ablated surface. The experimental etching data fur polymers are used to give material properties for ablation model. The fitted etch depth curve gives a nice agreement with the experimental data.

폴리머의 엑시머레이저 어블레이션에 관한 연구 (A study of excimer laser ablation of polymer)

  • 신동식;이제훈;서정;김도훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1857-1860
    • /
    • 2003
  • The ablative decomposition mechanism of PMMA(polymethyt methacrylate), PET(polyethylene terephthalate) and PC(polycarbonate) with KrF excimer laser(λ: 248nm, pulse duration: 5ns) is investigated. The UV/Vis spectrometer analysis showed that PMMA is a weak absorber and PET, PC are a strong absorber at the wavelength of 248nm. The results(surface debris, melt, etch depth, etching shape) from drilling and direct writing experiments imply that ablation mechanism of PMMA is dominated by photothermal process, while that of PET, PC are dominated by photochemical process.

  • PDF

전주금형 제작을 위한 폴리머의 엑시머 레이저 어블레이션 (Excimer Laser Ablation of Polymer for Electroformed Mold)

  • 이제훈;신동식;서정;김도훈
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.13-20
    • /
    • 2004
  • Manufacturing process for the microfluidic device can include such sequential steps as master fabrication, electroforming, and injection molding. The laser ablation using masks has been applied to the fabrication of channels in microfluidic devices. In this study, manufacturing of polymer master and mold insert for micro injection molding was investigated. Ablation of PET (polyethylene terephthalate) by the excimer laser radiation could be used successfully to make three dimensional master fur nickel mold insert. The mechanism fur ablative decomposition of PET with KrF excimer laser $({\lambda}: 248 nm, pulse duration: 5 ns)$ was explained by photochemical process, while ablation mechanism of PMMA (polymethyl methacrylate) is dominated by photothermal process, the .eaction between PC (polycarbonate) and KrF excimer laser beam generate too much su.face debris. Thus, PET was adopted in polymer master for nickel mold insert. Nickel electroforming using laser ablated PET master was preferable for replication method. Finally, it was shown that excimer laser ablation can substitute for X-ray lithography of LIGA process in microstructuring.

마이크로 다공질 폴리머 폼의 UV 레이저 미세가공에 관한 기초 연구 (A Fundamental Study on UV Laser Micro Machining of Micro Porous Polymeric Foams)

  • 오재용;신보성;이정한;박상후;박철범
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.572-577
    • /
    • 2012
  • Recently porous polymer has widely been applied to packaging, heat isolation, and sound absorption in various fields from the electrics to the automobiles industry. A lot of micro porosities inside foamed polymer provide lower heat conduction and lighter weight than non-porous polymer, because they involve gas or air during foaming process. In this paper experimental approaches of the UV laser micro machining behavior for Expanded Polypropylene (EPP) foamed polymer materials, which have different expansion rates, were investigated. From these results, the ablation phenomena were finally observed that the ablation is depended upon stronger photo-chemical than photo-thermal effect. This study will also help us to understand interaction between UV laser beam and porous polymer.

가상 레이저가공 시뮬레이션 프로그램 구축 (Development of a Simulation Program for Virtual Laser Machining)

  • 이호용;임중연;신귀성;윤경구;황경현;방세윤
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.54-61
    • /
    • 2005
  • A simulator for virtual laser machining is developed to help understanding and predicting the effects of machining parameters on the final machined results. Main program is based on the model for polymer ablation with short pulse excimer lasers. Version f of the simulator is built using Visual Fortran to make the user work under visual environment such as Windows on PC, where the important machining parameters can be input via dialog box and the calculated results for machined shape, beam fluence, and temperature distribution can be plotted through the 2-D graphics windows. Version II of the simulator is built using HTML, CGI and JAVA languages, allowing the user to control the input parameters and to see the results plot through the internet.

레이저를 이용한 준삼차원 미소형상 가공 모델링 (Modeling of Laser Micromachining of Quasi-three-dimensional Shapes)

  • 신귀성;윤경구;황경현;방세윤
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.79-87
    • /
    • 2005
  • This paper summarizes the work on the development of a simulation program for modelling the process of machining quasi-three dimensional shape with the excimer laser beam on a constantly moving polymers. Relatively simple masks of rectangle, triangle and half circle shape are considered. The etching depth is calculated by considering the number of laser pulses irradiated on the specimen surface. It was found that similar shapes as experimental results can be obtained by choosing suitable parameters of moving velocity, moving distance and mask sizes.

355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술 (Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength)

  • 장원석;신보성;김재구;황경현
    • 한국광학회지
    • /
    • 제14권3호
    • /
    • pp.312-320
    • /
    • 2003
  • 본 연구에서는 355 nm의 파장을 갖는 Nd:YVO$_4$ 3고주파 DPSS 레이저를 이용하여 폴리머의 3차원 미세형상 가공기술을 개발하였다. UV레이저와 폴리머의 어블레이션에 관한 메커니즘을 설명하였으며 비교적 UV영역에서 파장이 긴 355 nm파장의 영역에서는 광열분해 반응으로 가공되고 이에 따른 폴리머의 광학적 특성을 살펴보았다. 광 흡수율 특성이 우수한 폴리머가 광가공 특성이 좋은 것으로 나타났으나 벤젠구조가 많이 포함되어 있는 폴리이미드의 경우는 광분해후 다시 새로운 화학적 결합이 이루어져 가공부 면이 좋지 않은 면을 보였다. 레이저의 다중 주사방식으로 가공하기위하여 표면의 오염이 적은 폴리카보네이트를 시편으로 사용하여 3차원 적으로 모델링한 직경 1 mm와 500 $\mu\textrm{m}$의 마이크로 팬을 가공하였다. 레이저 발진 효율이 높고 유지비가 적은 355 nm의 DPSSL을 이용한 3차원 가공기술의 개발로 향후 저비용으로 빠른 시간에 미세부품을 개발하는 기술에 기여할 것으로 예상된다.