• Title/Summary/Keyword: 포텐셜 탐사

Search Result 19, Processing Time 0.026 seconds

Mineral Potential Mapping of Gagok Mine Using 3D Geological Modeling (3차원 지질모델링을 이용한 가곡광산 광상 포텐셜 지도 작성)

  • Park, Gyesoon;Cho, Seong-Jun;Oh, Hyun-Joo;Lee, Chang-Won
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.412-421
    • /
    • 2014
  • In order to develop an effective mineral exploration technique, this study was carried out about the potential mapping of Gagok mine. The deposit model of Gagok mine is widely known. Based on the deposit model, we constructed mining indicator indices using related igneous rocks, faults, and carbonate rocks. By analyzing the spatial correlation between ore and indicator index structures, we decided the weighting values of indices according to the distance from the index structure. The 3D potential mapping was performed using 3D geological model and geological indices. The analyzed potential map verified that the locations and patterns of high potential regions of the results were well matched with those of the known ore bodies. Using the potential mapping results, we could effectively predict the location of a high potential area that has similar geological settings with ore.

Potential Mapping of Moisan area Using SIP and 3D Geological Modeling (복소 전기비저항 및 3차원 지질모델링을 이용한 모이산 포텐셜 지도 구축)

  • Park, Gyesoon;Park, Samgyu;Son, Jeong-Sul;Kim, Changryol;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.209-215
    • /
    • 2014
  • In order to develop a new mineral exploration technique, a study was carried out about the potential mapping of Moisan area using SIP (Spectral Induced Polarization) data. The SIP inversion results were classified according to the geological regions, and the distribution characteristics of resistivity and phase values of SIP data were analyzed at the ore region. Based on the characteristics of SIP of ore bodies, we performed 3D potential mapping of Moisan area. The analyzed potential map was verified using that the locations and patterns of high potential regions of the results are well matched with those of the known ore bodies. If we get the higher spatial resolution SIP data, the potential mapping technique using SIP data can be effectively applied to the estimation of mining deposit.

Continuation of potential data by measns of equivalent source method (등가샘(equivalent source) 기법을 이용한 포텐셜 자료 처리)

  • Rim, Hyoung-Rea;Park, Young-Sue;Lim, Mu-Taek;Shin, Young-Hong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2010.10a
    • /
    • pp.155-156
    • /
    • 2010
  • 포텐셜 자료의 해석을 위해서는 상하향 연속을 이용하는 경우가 많다. 빠른 계산과 다양한 적용성 때문에 FFT(Fast Fourier Transform)을 이용한 상하향 연속을 주로 사용하는데, FFT를 적용하기 위해서는 격자망 형태로 얻어진 자료가 필요하다. 현장 중자력 자료는 보통 산발적(scattered)으로 얻어지기 때문에 FFT를 수행하기 위하여 격자망 자료로 변환하는 격자화(gridding) 과정에서 계산적인 오차가 발생한다. 반면 등가샘(equivalent source) 방법은 주어진 자료에 맞는 가상의 샘(source)들의 조합을 생성하고, 구해진 샘들의 조합으로부터 임의의 영역에서 필드값을 구하므로 격자화 과정이 필요없다. 이 연구의 목적은 등가샘 방법의 필요성을 보이고 여러 가지 등가샘 알고리즘을 비교분석하고 현장 자료에 사용하기 적합한 등가샘 방법들을 보여주는데 있다. 그림 1에서 보듯이 FFT를 사용한 상향 연속은 FFT 이론상 전 영역에 대한 적분이 필요하나 현장에서는 일부분의 자료만을 획득할 수 있으므로 상향 연속에서 정확한 자력값으로 연속을 수행하는 것은 불가능하다. 그러나 주어진 값들로 등가샘을 구성하여 상향 연속을수행한 결과는 상대적으로 보다 정확한 해에 도달한다. 또한 등가샘 방법을 이용한 연속의 장점은 그림 2와 같이 얻어진 자료의 높이가 서로 다른 자료를 주어진 높이로 연속을수행할 수 있다는 점이다. 또한 한번 등가샘들을 구성하면 이를 이용하여 격자화, 필터링 등을 해석을 위한 기초 자료처리에 적용할 수 있다.

  • PDF

Closed-form Expressions of the Vector Gravity and Gravity Gradient Tensor Due to a Circular Disk (원판형 이상체에 의한 벡터 중력 및 중력 변화율 텐서 반응식)

  • Rim, Hyoungrea
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • The closed-form expressions of the vector gravity and gravity gradient tensor due to a circular disk are derived. The gravity potential due to a circular disk with a constant density is defined for a cylindrical system. Then, the vector gravity is derived by differentiating the gravity potential with respect to cylindrical coordinates. The radial component of the vector gravity in the cylindrical system is converted into horizontal gravity components in the Cartesian system. Finally, the gravity gradient tensor due to a circular disk is obtained by differentiating the vector gravity with respect to the Cartesian coordinates.

Gravity Potential Comparative Analysis around Korean Peninsula by EGM96 and EIGEN-CG01C Models (EGM96와 EIGEN-CG01C 모델에 의한 한반도 주변의 중력포텐셜 비교분석)

  • Yu, Sang-Hoon;Kim, Chang-Hwan;Min, Kyung-Duck
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.261-266
    • /
    • 2005
  • According to development of satellite geodesy, gravity potential models which have high accuracy and resolution were released. Using the EIGEN-CG01C model based on low orbit satellite data such as CHAMP and GRACE and the EGM96 model, geoid and gravity anomaly were calculated and compared. The study area is located at $123^{\circ}{\sim}132^{\circ}$ E, $33^{\circ}{\sim}43^{\circ}$ including Korea. Comparing two models, very high correlation more than 0.90 in geoid and gravity anomaly was observed, but in amplitude analysis the EIGEN-CG01C model have higher amplitude in high frequency area. Gravity anomaly calculated with both models shows a little difference in North Korea and some coast area of the Yellow sea. Through power spectrum analysis, residual anomaly that can be used in large scale structure or underground resources survey was calculated.

  • PDF

Analysis of the Geological Structure of the Hwasan Caldera Using Potential Data (포텐셜 자료해석을 통한 화산칼데라 구조 해석)

  • Park, Gye-Soon;Yoo, Hee-Young;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo;Eom, Joo-Young;Kim, Dong-O;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • A geophysical mapping was performed for Hwasan caldera which is located in Euisung Sub-basin of the southeastern part of the Korean Peninsula. In order to overcome the limitation of the previous studies, remote sensing technic was used and dense potential data were obtained and analyzed. First, we analyzed geological lineament for target area using geological map, digital elevation model (DEM) data and satellite imagery. The results were greatly consistent with the previous studies, and showed that N-S and NW-SE direction are the most dominant one in target area. Second, based on the lineament analysis, highly dense gravity data were acquired in Euisung Sub-basin and an integrated interpretation considering air-born magnetic data was made to investigate the regional structure of the target area. The results of power spectrum analysis for the acquired potential data revealed that the subsurface of Euisung Sub-basin have two density discontinuities at about 1 km and 3-5 km depth. A 1 km depth discontinuity is thought as the depth of pyroclastic sedimentary rocks or igneous rocks which were intruded at the ring vent of Hwasan caldera, while a 3-5 km depth discontinuity seems to be associated with the depth of the basin basement. In addition, three-dimensional gravity inversion for the total area of Euisung Sub-basin was carried out, and the inversion results indicated two followings; 1) Cretaceous Palgongsan granite and Bulguksa intrusion rocks, which are located in southeastern part and northeastern part of Euisung Sub-basin, show two major low density anomalies, 2) pyroclastic rocks around Hwasan caldera also have lower density when compared with those of neighborhood regions and are extended to 1.5 km depth. However, a poor vertical resolution of potential survey makes it difficult to accurately delineate the detailed structure caldera which has a vertically developed characteristic in general. To overcome this limitation, integrated analysis was carried out using the magnetotelluric data on the corresponding area with potential data and we could obtain more reasonable geologic structure.

The Technical Solution for Various Array Methods in Resistivity Survey (전기비저항 탐사의 다양한 배열 방법에 대한 해석 기법)

  • Park, Chung-Hwa
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.49-55
    • /
    • 2007
  • Various away methods are required in the electrical resistivity survey in order to find anomalous zone reliably. Array methods are classified as several groups. Among these group, a curved survey along the fixed elevation is designed to increase the mobility of men and survey equipments at the rough terrain. Another method is performed at the survey using inclined, curved, and horizontal boreholes. A survey can also be conducted in an arbitrary location by measurements of potentials for a multi sources. The complex data acquired using various away methods are represented by a correct images reconstructed from the 3D inversion. The element division is applied to the region in which the boreholes are curved and inclined because of a spatial discrepancies between the coordinate of each electrode and the nodal point in a model. The resistivity images are obtained from a good agreement for the anomalous zones in open slope and in survey using an inclined borehole.

Deriving geological contact geometry from potential field data (포텐셜 필드 자료를 이용한 지짙학적 경계 구조 해석)

  • Ugalde, Hernan;Morris, William A.
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.40-50
    • /
    • 2010
  • The building process of any geological map involves linking sparse lithological outcrop information with equally sparse geometrical measurements, all in a single entity which is the preferred interpretation of the field geologist. The actual veracity of this interpretative map is partially dependent upon the frequency and distribution of geological outcrops compounded by the complexity of the local geology. Geophysics is commonly used as a tool to augment the distribution of data points, however it normally does not have sufficient geometrical constraints due to: a) all geophysical inversion models being inherently non-unique; and b) the lack of knowledge of the physical property contrasts associated with specific lithologies. This contribution proposes the combined use of geophysical edge detection routines and 'three point' solutions from topographic data as a possible approach to obtaining geological contact geometry information (strike and dip), which can be used in the construction of a preliminary geological model. This derived geological information should first be assessed for its compatibility with the scale of the problem, and any directly observed geological data. Once verified it can be used to help constrain the preferred geological map interpretation being developed by the field geologist. The method models the contacts as planar surfaces. Therefore, it must be ensured that this assumption fits the scale and geometry of the problem. Two examples are shown from folded sequences at the Bathurst Mining Camp, New Brunswick, Canada.

THE SELECTION OF ALTITUDE AND INCLINATION FOR REMOTE SENSING SATELLITES (원격탐사 위성의 고도와 궤도기울기 결정)

  • 이정숙;이병선
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.244-255
    • /
    • 1995
  • The success of a satellites mission is largely depended upon the choice of an appropriate orbit. In the case of a remote sensing satellite which observes the Earth, there exits an optimum solar elevation angle depending on the mission. Therefore a sun-synchronous orbit is suitable for a remote sensing mission. The second-order theory for secular perturbation due to non-symmetric geopotential was described. To design a sun-synchronous orbit, a constraint condition on regression of node was derived. A algorithm to determine the altitude and the inclination was introduced using this constraint condition. As practical examples, the altitudes and the inclinations of four remote sensing satellites were calculated. The ground tracks obtained by the orbit propagator were used to verify the resulting sun-synchronous orbital elements.

  • PDF