Browse > Article
http://dx.doi.org/10.7582/GGE.2021.24.1.001

Closed-form Expressions of the Vector Gravity and Gravity Gradient Tensor Due to a Circular Disk  

Rim, Hyoungrea (Department of Earth Science Education, Pusan National University)
Publication Information
Geophysics and Geophysical Exploration / v.24, no.1, 2021 , pp. 1-5 More about this Journal
Abstract
The closed-form expressions of the vector gravity and gravity gradient tensor due to a circular disk are derived. The gravity potential due to a circular disk with a constant density is defined for a cylindrical system. Then, the vector gravity is derived by differentiating the gravity potential with respect to cylindrical coordinates. The radial component of the vector gravity in the cylindrical system is converted into horizontal gravity components in the Cartesian system. Finally, the gravity gradient tensor due to a circular disk is obtained by differentiating the vector gravity with respect to the Cartesian coordinates.
Keywords
gravity potential; vector gravity; gravity gradient tensor; circular disk;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arfken, G. B., Weber H. J., and Harris, F. E., 2012, Mathematical methods for physicists 7th ed., Elsevier.
2 Blakely, R. J., 1996, Potential Theory in gravity and magnetic applications, Cambridge University Press.
3 Blum, V. J., 1945, The magnetic field over igneous pipes, Geophysics, 10(3), 368-375, doi: 10.1190/1.1437180.   DOI
4 Byrd, P. F., and Friedman, M. D., 1971, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, doi: 10.1007/978-3-642-65138-0.   DOI
5 Carlson, B. C., 1995, Numerical computation of real and complex elliptic integrals, Numer. Algorithms, 10, 13-26, doi: 10.1007/BF02198293.   DOI
6 Carlson, B. C., and Notis, E. M., 1981, Algorithm 577: Algorithm for incomplete elliptic integrals, AMC Trans. Math. Softw., 7(3), 389-403, doi: 10.1145/355958.355970   DOI
7 Damiata, B. N., and Lee, T.-C., 2002, Gravitational attraction of solids of revolution. Part 1: Vertical circular cylinder with radial variation of density, J. Appl. Geophy., 50(3), 333-349, doi: 10.1016/S0926-9851(02)00151-9.   DOI
8 Eason, G., Noble, B., and Sneddon, I. N., 1955, On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Philos. Trans. R. Soc. A, Mathematical and Physical Sciences, 247(935), 529-551, doi: 10.1098/rsta.1955.0005.   DOI
9 Krogh, F. T., Ng, E. W., and Snyder, W. V., 1982, The gravitational field of a disk, Celest. Mech., 26(4), 395-405, doi: 10.1007/BF01230419.   DOI
10 Nettleton, L. L., 1942, Gravity and magnetic calculations, Geophysics, 7(3), 293-310, doi: 10.1190/1.1445015.   DOI
11 Pilkington, M., 2014, Evaluating the utility of gravity gradient tensor components, Geophysics, 79(1), G1-G14, doi: 10.1190/geo2013-0130.1   DOI
12 Rim, H., and Li, Y., 2016, Gravity gradient tensor due to a cylinder, Geophysics, 81(4), G59-G66, doi: 10.1190/geo2015-0699.1.   DOI
13 Rao, B. S. R., and Radhakrishnamurthy, I. V., 1966, An expression for the gravitational attraction of a circular plate, Indian J. Pure Appl. Phys., 4, 276-278.
14 Sarma, B. S. P., Verma, B. K., and Satyanarayana, S. V., 1999, Magnetic mapping of Majhgawan diamond pipe of central India, Geophysics, 64(6), 1735-1739, doi: 10.1190/1.1444678.   DOI
15 Singh, S. K., 1977, Gravitational attraction of a circular disc, Geophysics, 42(1), 111-113, doi: doi.org/10.1190/1.1440704.   DOI
16 Talwani, M., 1973. Computer usage in the computation of gravity anomalies, Methods in Computational Physics: Advances in Research and Applications, 13, 343-389, doi: 10.1016/B978-0-12-460813-9.50014-X.   DOI