• 제목/요약/키워드: 포인트 클라우드

검색결과 258건 처리시간 0.025초

누적된 포인트 클라우드의 객체별 분할 시스템 (Object Segmentation System for Accumulated Point Clouds)

  • 국윤창;조성재;장위강;조경은
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.950-951
    • /
    • 2017
  • 본 논문에서는 Velodyne 센서로 촬영한 포인트 클라우드를 시간에 따라 누적하고 객체로 구분함으로써 ground truth 데이터를 생성할 수 있는 시스템을 제안한다. 기존에 포인트 클라우드를 객체 단위로 구분하기 위해선 데이터의 매 프레임마다 구분 작업을 수행해야 한다. 본 논문에서 제안하는 시스템은 포인트 클라우드를 누적하여 가시화하고 객체 단위로 구분할 수 있는 도구를 제공함으로써 사용자의 작업량을 줄여주고 편의성을 향상시킨다.

3D DCT 를 이용한 포인트 클라우드의 움직임 예측/보상 기법 (3D Motion Estimation and Compensation method for Point cloud video codec by 3D DCT)

  • 이민석;김보연;윤상은;황용해;김준식;김규헌
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.279-282
    • /
    • 2021
  • 포인트 클라우드는 3 차원 물체를 표현하기 위한 점들의 집합으로, 동적인 3 차원 데이터를 정밀하게 획득할 수 있기에 이의 효율적인 압축의 필요성이 대두되고 있다. 기존 3D DCT(3D Discrete Cosine Transform)를 이용한 동적 객체의 포인트 클라우드 압축 방식은 Inter 프레임 압축을 고려하지 않아 압축시의 데이터 압축률에 한계가 있다. 따라서 본 논문은 이러한 문제점을 개선하기 위해 3D DCT 를 이용한 움직임 예측을 통하여 포인트 클라우드 영상의 I 프레임 및 P 프레임을 압축하는 방식을 제안한다.

  • PDF

포즈 변형을 이용한 포인트 클라우드 압축 (Point Clouds Compression Using Pose Deformation)

  • 이솔;박병서;박정탁;서영호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.47-48
    • /
    • 2021
  • 본 논문에서는 대용량의 3D 데이터 시퀀스의 압축을 진행한다. 3D 데이터 시퀀스의 각 프레임에서 Pose Estimation을 통해 3D Skeleton을 추출한 뒤, 포인트 클라우드를 skeleton에 묶는 리깅 과정을 거치고, 다음 프레임과 같은 자세로 deformation을 진행한다. 다음 프레임과 같은 자세로 변형된 포인트 클라우드와 실제 다음 프레임의 포인트 클라우드를 비교하여, 두 데이터에 모두 있는 점, 실제 다음 프레임에만 있는 점, deformation한 데이터에만 있는 점으로 분류한다. 두 데이터에 모두 있는 점을 제외하고 나머지 두 분류의 점들을 저장함으로써 3D 시퀀스 데이터를 압축할 수 있다.

  • PDF

무인항공기에서 생성된 포인트 클라우드의 평면성 분석을 통한 자동 건물 모델 생성 기법 (Automatic Building Modeling Method Using Planar Analysis of Point Clouds from Unmanned Aerial Vehicles)

  • 김한결;황윤혁;이수암
    • 대한원격탐사학회지
    • /
    • 제35권6_1호
    • /
    • pp.973-985
    • /
    • 2019
  • 본 논문에서는 저비용으로 생성할 수 있는 무인항공기 기반의 포인트 클라우드를 사용하여 평면성 분석을 통해 지면과 건물 영역을 분리하고 자동으로 건물 모델을 생성하는 방법을 제안한다. 제안하는 방법은 총 다섯 단계로 구성된다. 첫 단계에서는 입력되는 포인트 클라우드의 평면성을 분석하여 포인트 클라우드를 구성하는 평면들을 추출하였다. 두 번째 단계에서는 추출된 평면들을 분석하여 지표면에 해당하는 평면을 찾고 포인트 클라우드에서 해당 평면 기준으로 포인트들을 제거하였다. 세 번째 단계에서는 지표면이 제거된 포인트 클라우드를 정사 투영하여 영상을 제작하였다. 네 번째 단계에서는 정사 투영된 영상에서 각각의 객체의 외곽선을 추출하고 외곽선의 넓이와 넓이, 길이 비율을 이용하여 건물 불인정 영역을 제거하였다. 마지막 단계에서는 건물의 지표면 높이와 건물의 높이를 이용하여 건물의 외곽점을 구성하고 3D 건물 모델을 생성하였다. 제안한 방법을 검증하기 위하여 무인항공기 영상을 이용해 제작된 포인트 클라우드를 사용하였으며, 실험을 통해 제안 기법을 통해 무인항공기 기반 포인트 클라우드에서 자동으로 건물의 3D 모델이 생성 가능함을 확인하였다.

Incremental Bundle Adjustment와 스테레오 영상 정합 기법을 적용한 무인항공기 영상에서의 포인트 클라우드 생성방안 연구 (A Study on Point Cloud Generation Method from UAV Image Using Incremental Bundle Adjustment and Stereo Image Matching Technique)

  • 이수암;황윤혁;김수현
    • 대한원격탐사학회지
    • /
    • 제34권6_1호
    • /
    • pp.941-951
    • /
    • 2018
  • 3차원 도시모델의 생성을 위한 무인항공기의 활용 및 수요가 증가하고 있다. 본 연구에서는 3D 도시 모델 생성의 선행 연구로 불완전한 자세에서 취득된 무인항공기의 위치/자세 정보를 보정하여 포인트 클라우드를 추출하는 연구를 수행했다. 포인트 클라우드의 추출을 위해서는 정밀한 센서모델의 수립이 선행되어야 한다. 이에 무인항공기의 위치/자세 보정을 위해 무인항공기 영상에 기록된 위치정보의 연속성을 이용하여 회전각을 산출하고, 이를 초기값으로 하는 사진 측량 기반의 IBA(Incremental Bundle Adjustment)를 적용하여 보정된 위치/자세 정보를 획득했다. 센서모델 정보를 통해 스테레오 페어 구성이 가능한 영상들을 자동으로 선별하고 페어간의 타이포인트 정보를 이용해 원본 영상을 에피폴라 영상으로 변환했으며, 변환된 에피폴라 스테레오 영상은 고속, 고정밀의 영상 정합기법인 MDR (Multi-Dimensional Relaxation)의 적용을 통해 포인트 클라우드를 추출했다. 각 페어에서 추출된 개별 포인트 클라우드는 집성 과정을 거쳐 하나의 포인트 클라우드 혹은 DSM의 최종 산출물 형태로 출력된다. 실험은 DJI社 무인항공기에서 취득된 연직 및 경사 촬영 영상을 사용했으며, 실험을 통해 건물의 난간, 벽면 등이 선명하게 표현되는 포인트 클라우드 추출이 가능함을 확인하였다. 향후에는 추출된 포인트 클라우드를 이용한 3차원 건물 추출 연구를 통해 3차원 도시모델의 생성을 위한 영상 처리기술을 계속 발전시켜나가야 할 것이다.

3차원 포인트클라우드 기반 단면 정보 추출 기술 개발 (A Study on Cross-section Extraction Method based on 3D Point Cloud Data)

  • 김회민;전성국;김운용;윤정록
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.277-278
    • /
    • 2022
  • 본 연구는 3차원 포인트클라우드로부터 단면 정보를 자동으로 추출할 수 있는 알고리즘에 관한 것이다. 3차원 스캐너로부터 획득한 포인트클라우드 데이터는 다양한 제조 공정의 결과물인 산업 제품의 접합 상태를 파악하는데 자주 사용된다. 하지만 많은 노이즈를 포함하는 포인트클라우드 데이터로부터 제조 상태에 대한 수치적인 결과를 반복적으로 획득하기에는 많은 비용이 수반된다. 따라서 본 연구는 산업 제품의 접합부에 대한 포인트클라우드로부터 단면 정보를 자동으로 추출할 수 있는 알고리즘을 소개하고자 한다.

주성분 분석을 통한 포인트 클라우드 굽은 실린더 형태 매칭 (Matching for the Elbow Cylinder Shape in the Point Cloud Using the PCA)

  • 진영훈
    • 정보과학회 논문지
    • /
    • 제44권4호
    • /
    • pp.392-398
    • /
    • 2017
  • 포인트 클라우드를 이용한 물체의 표현은 레이저 스캐너를 통해 공간을 스캔하여 점의 집합을 추출하고, 정합(Registration)을 통해 하나의 좌표계로 통합하는 과정을 거쳐 이루어진다. 정합이 완료된 포인트 클라우드 집합은 수학적 해석을 통해 의미 있는 영역, 형태, 잡음 등으로 분류되어 쓰이게 된다. 본 논문은 3차원 포인트 클라우드 데이터에서 실린더 형태의 굽은 영역 매칭을 목표로 한다. 매칭 절차는 포인트 클라우드에서 RANdom SAmple Consensus(RANSAC)을 통한 구(sphere) 적합(fitting)으로 실린더 형태의 점 후보군을 추출하여 중심과 반지름 데이터를 얻고, 추출된 중심점 데이터에서 주성분 분석(Principal Component Analysis)을 통해 굽은 영역인지 판별한 후 캣멀롬 스플라인(Catmull-Rom spline)으로 굽은 영역 매칭을 완료한다. 제안된 방법은 제약조건 및 분할 없이 중심축 추정에 이은 직선 및 굽은 형태의 실린더 추정으로 비교적 빠른 추정결과를 도출하고, 역설계의 작업효율을 높일 수 있을 것으로 기대된다.

SHVC 비디오 기반 포인트 클라우드 밀도 스케일러빌리티 방안 (Density Scalability of Video Based Point Cloud Compression by Using SHVC Codec)

  • 황용해;김준식;김규헌
    • 방송공학회논문지
    • /
    • 제25권5호
    • /
    • pp.709-722
    • /
    • 2020
  • 포인트 클라우드는 수많은 점의 집합으로 이루어진 데이터로 2차원 평면에서 벗어나 3차원 공간에서 3D 객체를 표현하는 것이 가능하다. 각 점은 기본적으로 3차원 공간의 좌표 정보가 필요하고 추가적으로 색 (Color), 반사율 (Reflectance) 같은 속성을 가질 수 있도록 구성되어 있다. 이처럼 3D 포인트 클라우드 표현에는 2D 영상보다 많은 데이터를 사용하고 있기에, 이를 사용자에게 효율적으로 제공하기 위해서는 고효율의 압축 기술 연구가 필요하며, 현재 국제 표준 기구인 MPEG에서는 포인트 클라우드 콘텐츠 압축 방법으로 2D 비디오 압축 기술을 사용한 Video-based Point Cloud Compression (V-PCC) 기술이 연구되고 있다. 이러한 고효율의 포인트 클라우드 압축방식에도 불구하고 단말의 성능이나 네트워크 환경 등의 문제로 인해 서비스가 제한되는 상황이 발생할 수 있다. 2D 영상의 경우 Scalable High efficiency Video Coding (SHVC) 혹은 Dynamic Adaptive Streaming over HTTP (DASH) 등의 다양한 기술을 사용하여 이러한 문제를 해결하고 있다. 이에 본 논문에서는 V-PCC 구조에 SHVC를 적용하여, 밀도 스케일러빌리티 기능을 가진 포인트 클라우드 압축 방안을 제안하는 것으로 이러한 문제를 해결하고자 한다.

포인트 클라우드 형태의 인터랙티브 홀로그램 콘텐츠 (Point Cloud Content in Form of Interactive Holograms)

  • 김동현;김상욱
    • 한국콘텐츠학회논문지
    • /
    • 제12권9호
    • /
    • pp.40-47
    • /
    • 2012
  • 미디어 아트는 새로운 경로의 인식과 지각을 동반하고, 기존의 미술과는 다른 인간의 신체를 도구화 하여 상호작용을 만들어내는 새로운 감상방식을 제안한다. 시각적인 영상을 제작하는 방식 중 포인트 클라우드는 점으로 형태를 표현한다는 점에 있어 서양미술의 점묘법과 유사하며 이는 전통회화 기법을 디지털 기술을 활용해 재구성한다는 의미를 가진다. 본 논문에서는 미학적 요소와 디지털 기술을 융합한 새로운 감상방식으로 포인트 클라우드 형태의 영상을 제작하여 홀로그램 필름에 투사하고, 관람자의 손짓이 영상과 상호작용하는 콘텐츠를 제시한다. 콘텐츠 제작은 콘텐츠 제작 배경 의도를 기획하고 포인트 클라우드 형태의 이미지 제작, 상호작용을 위한 3D 제스처 디자인 과정을 거쳐 최종적으로 홀로그램 필름에 투사하는 과정을 거친다. 콘텐츠는 사람의 의식 속에서 일어나는 기억의 회상 과정을 시각적, 체감적으로 표현한다. 이를 위해 기억의 회상 과정을 불확실한 기억, 기억의 구체화, 완전한 회상으로 설정하였다. 불확실한 기억은 포인트 클라우드 형태의 이미지를 통해 모호한 형태의 이미지로 표현되고, 상호작용으로 이미지를 조작하는 행위를 통해 기억을 구체화 해 나가면서 완전한 회상을 하게 된다.

강화학습 기반 3D 객체복원 데이터 획득 시뮬레이션 설계 (Designing a Reinforcement Learning-Based 3D Object Reconstruction Data Acquisition Simulation)

  • 진영훈
    • 사물인터넷융복합논문지
    • /
    • 제9권6호
    • /
    • pp.11-16
    • /
    • 2023
  • 물체나 공간을 디지털화하는 기술인 3D 복원은 주로 포인트 클라우드 데이터를 활용한다. 본 논문은 강화학습을 활용하여 주어진 환경에서 포인트 클라우드의 획득을 목표로 한다. 이를 위해 시뮬레이션 환경은 유니티를 이용하여 구성하고, 강화학습은 유니티 패키지인 ML-Agents를 활용한다. 포인트 클라우드 획득 과정은 먼저 목표를 설정하고, 목표 주변을 순회할 수 있는 경로를 계산한다. 순회 경로는 일정 비율로 분할하여 각 스텝마다 보상한다. 이때 에이전트의 경로 이탈을 방지하기 위해 보상을 증가시킨다. 에이전트가 순회하는 동안 목표를 응시할 때마다 보상을 부여하여 각 순회 스텝에서 포인트 클라우드의 획득 시점을 학습하도록 한다. 실험결과, 순회 경로가 가변적이지만 상대적으로 정확한 포인트 클라우드를 획득할 수 있었다.