• Title/Summary/Keyword: 포인트 센서

Search Result 107, Processing Time 0.025 seconds

Development of 3D Measuring System for Artificial Pontic using Spherical Coordinate System Mechanism (구면좌표계식 기구를 이용한 인공치아의 3차원 측정시스템 개발)

  • Maeng, Hee-Young;Sung, Bong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.427-433
    • /
    • 2010
  • With recent increased demand for reverse engineering in dental machining, the 3D laser scanner is widely used for inspection of artificial pontic. In order to overcome the optical drawback of laser scanner, such as irregular scatter, direction of beam, and the influence of surface integrity, it is developed in this study a new 3D measuring system for artificial pontic using spherical coordinate system mechanism by point laser sensor, which keeps the direction of beam normal to surface consistently. The comprehensive integrated system is established to evaluate the improvement of accuracy with data acquisition system. The experimental results for measuring a master ball and pontic models shows the excellent form accuracy and repeatability compared with conventional apparatus. Also, these results shows the possibility to apply this system for the measuring purpose within 0.05mm accuracy of pontic at the sharp edge or margin contour, which was difficult to measure at the conventional systems.

An Optimal Position and Orientation of Stereo Camera (스테레오 카메라의 최적 위치 및 방향)

  • Choi, Hyeung-Sik;Kim, Hwan-Sung;Shin, Hee-Young;Jung, Sung-Hun
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.354-360
    • /
    • 2013
  • A stereo vision analysis was performed for motion and depth control of unmanned vehicles. In stereo vision, the depth information in three-dimensional coordinates can be obtained by triangulation after identifying points between the stereo image. However, there are always triangulation errors due to several reasons. Such errors in the vision triangulation can be alleviated by careful arrangement of the camera position and orientation. In this paper, an approach to the determination of the optimal position and orientation of camera is presented for unmanned vehicles.

Suggestion of Device for Collecting Fine Dust using Drone (드론을 이용한 미세먼지 데이터 수집 장치 제안)

  • Jo, Youngjun;Baek, SeungHyun;Lee, JongGu;Yu, Sangmin;Jang, Minseok;Lee, Yonsik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.397-400
    • /
    • 2019
  • 급격히 증가하는 자동차 수, 발전량 증가 등으로 인하여 미세먼지로 인한 환경오염이 심각한 사회문제로 대두되고 있는 실정이다. 50개가 넘는 국가들이 권고치 이상의 미세먼지로 인해 피해를 받고 있으며 각 피해국들은 미세먼지 저감 대책 및 발생을 최소화하기 위한 방안을 연구하고 있다. 하지만 현재 고정형 미세먼지 취득 드론으로는 다양한 포인트의 미세먼지 데이터를 수집하기 힘든 상황이며, 기존 드론을 활용한 방법에서 도 회전 날개의 영향으로 인해 정확한 데이터를 수집하기 힘든 실정이다. 본 논문에서는 드론과 특정 구조물을 활용한 미세먼지 수집 방법을 제안하고 이의 효율성을 보여주고자 한다.

  • PDF

A study on evaluation of levee crack based on ORS (광학원격탐사 기반의 제방 균열 평가에 관한 연구)

  • Kim, Jong Tae;Lee, Chang Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.224-224
    • /
    • 2021
  • 광학원격탐사를 통해 취득할 수 있는 초분광 영상은 관련 기술의 발전으로 다양하게 활용이 되고 있다. 특히 초경량 UAV를 기반으로 초분광 센서를 적용한 광학원격탐사는 광범위하게 분포하는 국내 제방의 불안정 요소를 탐지하는데 보다 효과적일 것으로 판단되며 대상에 대한 광역모니터링을 통해 많은 자료를 얻을 수 있고, 고해상도 영상 자료를 활용한 세밀한 분광 및 공간정보 분석이 가능하다. 본 연구에서는 제방 균열 평가를 위해 UAV를 활용하여 안동댐 하류 제방 균열을 대상으로 고해상도 초분광 영상을 취득하였으며, 기 개발된 제방 균열 평가 소프트웨어를 이용하여 조도와 최대강도 데이터에 따른 제방 균열 평가를 실시하였다. 연구지역의 지질은 중생대 백악기의 일직층으로써 적색이암, 셰일, 역질사암 등이 주를 이루고 있으며 제방 내 토양은 대부분 입도가 균일하며 일부 역암이 관찰되는 지역으로 조립토가 주를 이루고 있다. 기 개발된 소프트웨어의 특징은 측정된 데이터를 바탕으로 균열 여부를 판별할 수 있는 프로그램으로써 측정지점마다 별도의 조도와 최대강도 데이터가 주어졌을때, 해당 데이터에 대한 균열 여부를 판별할 수 있다. 주요기능은 제방 균열 여부 판단, 데이터 입력 및 판단을 출력하기 위한 GUI 인터페이스를 제공한다. 연구 결과 제방 균열 평가 소프트웨어를 적용하여 균열과 비균열에 대한 탐지가 가능한 것으로 나타났다. 특히 비균열 포인트의 경우 암석이나 토양의 성질, 빛의 반사에 따라 일부 차이가 있지만 균열은 매우 유사한 반사율 정보를 보이는 것으로 나타났다.

  • PDF

An Efficient Interferometric Radar Altimeter (IRA) Signal Processing to Extract Precise Three-dimensional Ground Coordinates (정밀 3차원 지상좌표 추출을 위한 IRA의 효율적인 신호처리 기법)

  • Lee, Dong-Taek;Jung, Hyung-Sup;Yoon, Geun-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.507-520
    • /
    • 2011
  • Conventional radar altimeter system measured directly the distance between the satellite and the ocean surface and frequently used by aircraft for approach and landing. The radar altimeter is good at flat surface like sea whereas it is difficult to determine precise three dimensional ground coordinates because the ground surface, unlike ocean, is very indented. To overcome this drawback of the radar altimeter, we have developed and validated the interferometric radar altimeter signal processing which is combined with new synthetic aperture and interferometric signal processing algorithm to extract precise three-dimensional ground coordinates. The proposed algorithm can accurately measure the three dimensional ground coordinates using three antennas. In a set of 70 simulations, the averages of errors in x, y and z directions were approximately -0.40 m, -0.02 m and 4.22 m, respectively and the RMSEs were about 3.40 m, 0.30 m and 6.20 m, respectively. The overall results represent that the proposed algorithm is effective for accurate three dimensional ground positioning.

3D Model Generation and Accuracy Evaluation using Unmanned Aerial Oblique Image (무인항공 경사사진을 이용한 3차원 모델 생성 및 정확도 평가)

  • Park, Joon-Kyu;Jung, Kap-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.587-593
    • /
    • 2019
  • The field of geospatial information is rapidly changing due to the development of sensor and data processing technology that can acquire location information. And demand is increasing in various related industries and social activities. The construction and utilization of three dimensional geospatial information that is easy to understand and easy to understand can be an essential element to improve the quality and reliability of related services. In recent years, 3D laser scanners are widely used as 3D geospatial information construction technology. However, 3D laser scanners may cause shadow areas where data acquisition is not possible when objects are large in size or complex in shape. In this study, 3D model of an object has been created by acquiring oblique images using an unmanned aerial vehicle and processing the data. The study area was selected, oblique images were acquired using an unmanned aerial vehicle, and point cloud type 3D model with 0.02 m spacing was created through data processing. The accuracy of the 3D model was 0.19m and the average was 0.11m. In the future, if accuracy is evaluated according to shooting and data processing methods, and 3D model construction and accuracy evaluation and analysis according to camera types are performed, the accuracy of the 3D model will be improved. In the point cloud type 3D model, Cross section generation, drawing of objects, and so on, it is possible to improve work efficiency of spatial information service and related work.

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.

Analysis of Moisture Characteristics in Rockwool Slabs using Time Domain Reflectometry (TDR) Sensors and Their Applications to Paprika Cultivation (TDR 센서를 이용한 암면 슬라브 수분 특성 분석 및 파프리카 재배의 적용 예)

  • Park, Jong-Seok;Tait, NguyenHuy;An, Tae-In;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.238-243
    • /
    • 2009
  • To investigate the characteristics of moisture content (MC), moisture distribution and starting point of drainage in a rockwool slab culture, time domain reflectometry (TDR) sensors were used in a drip irrigation system. MC values ($0{\sim}100%$) measured by TDR sensors in a slab were compared to those by loadcells. Seventy two seedlings of paprika (Capsicum annuum L.) were cultured for $5{\sim}6$ months in a green-house and the starting point of irrigation was determined by the average value of three TDR sensors which were inserted diagonally across the slabs under the plants. MCs as a standard for starting point of irrigation by TDR were determined with 40%, 50%, and 60%. Distribution of MCs in a slab measured with five TDR sensors equally spaced from two irrigation points were not much different when the MC in the slab increased from zero to saturation point. The saturated MCs in the slab were presented at $58{\sim}65%$ and the drain was started when the MC became around $50{\sim}55%$. At the saturated MC in the slab, TDR sensors presented 100% but the values from the loadcell showed 90% at the same time. However, measurement errors between two methods for MC remarkably decreased with a decrease in the MC in a slab. Especially when the MC was maintaining below 60%, the errors between TDR and loadcell methods for measuring MC in the rock-wool slab were less than 5%. There were no significant differences in number of fruits and fresh and dry weights of fruits when they were cultured under the different MC conditions with three irrigation regimes (40%, 50%, and 60%). These results indicated that the MC control by TDR sensors in a rock-wool based paprika culture can be suggested as a method to determine the starting point of irrigation for a soilless culture system.

Stereoscopic Video Compositing with a DSLR and Depth Information by Kinect (키넥트 깊이 정보와 DSLR을 이용한 스테레오스코픽 비디오 합성)

  • Kwon, Soon-Chul;Kang, Won-Young;Jeong, Yeong-Hu;Lee, Seung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.920-927
    • /
    • 2013
  • Chroma key technique which composes images by separating an object from its background in specific color has restrictions on color and space. Especially, unlike general chroma key technique, image composition for stereo 3D display requires natural image composition method in 3D space. The thesis attempted to compose images in 3D space using depth keying method which uses high resolution depth information. High resolution depth map was obtained through camera calibration between the DSLR and Kinect sensor. 3D mesh model was created by the high resolution depth information and mapped with RGB color value. Object was converted into point cloud type in 3D space after separating it from its background according to depth information. The image in which 3D virtual background and object are composed obtained and played stereo 3D images using a virtual camera.

Development of Multi-Touch/Context-Aware Convergence Digital Signage System based on Android OS Platform (안드로이드 플랫폼 기반 멀티 터치/상황인지형 융복합 디지털 사이니지 시스템 개발)

  • Nahm, Eui-Seok
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.245-251
    • /
    • 2015
  • If a digital signage system is operated in PC mounted in the Window OS then the implementing price is very high. For resolving this problem, we used the Smartphone mounted in ARM Cortex family of multi-core processor-based mobile platform. We developed a low-power low-cost digital signage system and a remote convergence content management program based on web server. This convergence system manages advertising content to a remote control device anywhere using remote control technology. This system is one integrated system with display and is a low-power consumed and is developed in very efficient hardware interface. And condition sensors(intensity of illumination, temperature, weather, GPS etc) is equipped in the developed system. Automatic contents builder and Context-aware SMIL module is also implemented in the convergence system. We achieved over 50% power savings comparing with conventional Window OS system and 16 points multi-touch in our system.