Analysis of Moisture Characteristics in Rockwool Slabs using Time Domain Reflectometry (TDR) Sensors and Their Applications to Paprika Cultivation

TDR 센서를 이용한 암면 슬라브 수분 특성 분석 및 파프리카 재배의 적용 예

  • Park, Jong-Seok (Department of Plant Science, Seoul National University) ;
  • Tait, NguyenHuy (Department of Plant Science, Seoul National University) ;
  • An, Tae-In (Department of Plant Science, Seoul National University) ;
  • Son, Jung-Eek (Department of Plant Science, Seoul National University)
  • 박종석 (서울대학교 식물생산과학부) ;
  • 뉴엔타이 (서울대학교 식물생산과학부) ;
  • 안태인 (서울대학교 식물생산과학부) ;
  • 손정익 (서울대학교 식물생산과학부)
  • Published : 2009.09.30

Abstract

To investigate the characteristics of moisture content (MC), moisture distribution and starting point of drainage in a rockwool slab culture, time domain reflectometry (TDR) sensors were used in a drip irrigation system. MC values ($0{\sim}100%$) measured by TDR sensors in a slab were compared to those by loadcells. Seventy two seedlings of paprika (Capsicum annuum L.) were cultured for $5{\sim}6$ months in a green-house and the starting point of irrigation was determined by the average value of three TDR sensors which were inserted diagonally across the slabs under the plants. MCs as a standard for starting point of irrigation by TDR were determined with 40%, 50%, and 60%. Distribution of MCs in a slab measured with five TDR sensors equally spaced from two irrigation points were not much different when the MC in the slab increased from zero to saturation point. The saturated MCs in the slab were presented at $58{\sim}65%$ and the drain was started when the MC became around $50{\sim}55%$. At the saturated MC in the slab, TDR sensors presented 100% but the values from the loadcell showed 90% at the same time. However, measurement errors between two methods for MC remarkably decreased with a decrease in the MC in a slab. Especially when the MC was maintaining below 60%, the errors between TDR and loadcell methods for measuring MC in the rock-wool slab were less than 5%. There were no significant differences in number of fruits and fresh and dry weights of fruits when they were cultured under the different MC conditions with three irrigation regimes (40%, 50%, and 60%). These results indicated that the MC control by TDR sensors in a rock-wool based paprika culture can be suggested as a method to determine the starting point of irrigation for a soilless culture system.

TDR 수분함량 측정 센서를 이용하여 암면 슬라브 배지의 수분함량, 수분분포, 배액 시점의 특성과 포수 시킨 슬라브 배지의 수분함량 분포를 중량법(로드셀 이용)과 TDR 법으로 비교하였다. 배지수분 함량이 40%, 50%, 60%를 TDR 센서 3개의 평균값을 기준으로 급액시점을 정하며 $5{\sim}6$개월간 파프리카 72주를 유리온실에서 재배하였다. 두 곳의 급액 포인트로부터 등간격으로 설치된 5개의 TDR 센서를 이용하며 건조상태에서 0.2L씩 식 증액시키면서 급액시 슬라브내의 수분분포 특성을 살펴본 결과 급액 장소와 관계없이 슬라브내의 위치별 수분 분포가 매우 유사한 값을 나타내었다. 슬라브내의 포화수분 상태에서 TDR 센서값은 약 $58{\sim}65%$ 사이의 값을 나타내었으며, 약 $50{\sim}55%$의 수분함량 조건에서 배액이 시작되는 것을 확인 할 수 있었다. 배양액으로 완전 포화시킨 슬라브의 TDR 값은 100%를 보인 반면 중량법으로 측정한 유효수분함량(v/v, %)은 90%를 나타내었다. 그러나 증발에 의해 슬라브내의 수분함량이 낮아지면서, 두 측정간의 오차도 줄어들어, 약 60% 이하의 수분함량 조건에서 두 측정방식간의 오차는 5%미만을 보였다. 이러한 결과는 과채류 급액 제어 방식으로 TDR 센서의 이용 가능성을 확인 할 수 있었으며, 급액 시점을 3가지 배지수분조건으로 파프리카를 재배하였을 때 파프리카의 과수, 과중, 식물체의 엽면적 또는 경장과 같은 모든 요인에서 유의적인 차이를 발견 할 수 없었다.

Keywords

References

  1. Baas, R. and N.A. Straver. 2001. In situ monitoring water content and electrical conductivity in soilless media using a frequency-domain sensor. Acta Hort. 562:295-303
  2. Charpentier, S., V. Guerin, P. Morel, and R. Tawegoum. 2004. Measuring water content and electrical conductivity in substrates with TDR (Time Domain Reflectometry). Acta Hort. 644:283-290
  3. Choi, E.Y., Y.B. Lee, and J.Y. Kim. 2001. Determination of total integrated solar radiation range for the optimal absorption by plant in ditlerent substrates. Kor. J. Soc. Hort. Sci. 42(3):271-274
  4. De graaf, R. 1988. Automation of the water supply of glasshouse crops by means of calculating the transpiration and measuring the amount of drainage water. Acta Hort. 229:219-231
  5. Kim, H.J. and Y.S. Kim. 2004. Evaluation of irrigation system by balance and integrated solar radiation on the fruit quality of muskmelon in closed perlite culture system. J. Kor. Soc. Hort. Sci. 45(3):127-130
  6. Lapton, V.T., A. Artetxe, A. Beunza, R. Cerveto, and J. Majada. 2001. Irrigation control on substrates with the Laptometron, A new tensiometer. Acta Hort. 559:655-662
  7. Matsuno, A. 1990. The guide book of rockwool culture-Retarding culture of tomato plant. 33-41. The national agricultural cooperative union, Tokyo
  8. Sim, S.Y., S.Y. Lee, S.W. Lee, M.W. Seo, J.W. Lim, S.J. Kim, and Y.S. Kim, 2006, Characteristics of root media moisture in various irrigation control methods for tomato perlite bag culture. Journal of Bio-Environmental Control, 15(3):225-230
  9. Thomas, A.M. 1996. In situ measurement of moisture in soil and similar substances by fringe capacitance. J. Sci. lnstrum. 43:21-27 https://doi.org/10.1088/0950-7671/43/1/306
  10. Thomsen, A., K. Schelde, P. Droscher, and F. Steffensen. 2007. Mobile TDR for geo-referenced measurement of soil water content and electrical conductivity. Precision Agrie. 8:213-223 https://doi.org/10.1007/s11119-007-9041-1
  11. Wobschall, D. 1977. A theory of the complex dielectric permittivity of soil containing water. the semi disperse model. IEEE Trans. Geosci. Electron. 15(1):49-58 https://doi.org/10.1109/TGE.1977.294513
  12. Wobschall, D. 1978. A frequency shift dielectric soil moisture sensor. IEEE Trans. Geosci. Electron. 16(2):112-117 https://doi.org/10.1109/TGE.1978.294573
  13. Yamauchi, N. 1990. The guide book of rockwool culture-Retarding culture of cucumber plant. 82-91. The national agricultural cooperative union, Tokyo