DOI QR코드

DOI QR Code

An Efficient Interferometric Radar Altimeter (IRA) Signal Processing to Extract Precise Three-dimensional Ground Coordinates

정밀 3차원 지상좌표 추출을 위한 IRA의 효율적인 신호처리 기법

  • Lee, Dong-Taek (Department of Geoinformatics, The University of Seoul) ;
  • Jung, Hyung-Sup (Department of Geoinformatics, The University of Seoul) ;
  • Yoon, Geun-Won (The third Research and Development Institute, Agency for Defense Development)
  • 이동택 (서울시립대학교 공간정보공학과) ;
  • 정형섭 (서울시립대학교 공간정보공학과) ;
  • 윤근원 (국방과학연구소 제3기술연구본부)
  • Received : 2011.09.25
  • Accepted : 2011.10.18
  • Published : 2011.10.31

Abstract

Conventional radar altimeter system measured directly the distance between the satellite and the ocean surface and frequently used by aircraft for approach and landing. The radar altimeter is good at flat surface like sea whereas it is difficult to determine precise three dimensional ground coordinates because the ground surface, unlike ocean, is very indented. To overcome this drawback of the radar altimeter, we have developed and validated the interferometric radar altimeter signal processing which is combined with new synthetic aperture and interferometric signal processing algorithm to extract precise three-dimensional ground coordinates. The proposed algorithm can accurately measure the three dimensional ground coordinates using three antennas. In a set of 70 simulations, the averages of errors in x, y and z directions were approximately -0.40 m, -0.02 m and 4.22 m, respectively and the RMSEs were about 3.40 m, 0.30 m and 6.20 m, respectively. The overall results represent that the proposed algorithm is effective for accurate three dimensional ground positioning.

전파 고도계는 비행체의 직하방으로 펄스를 발사하고 펄스의 왕복 도달 시간을 거리로 환산하여 고도를 탐지하는 시스템으로써, 이착륙하는 항공기가 지면에 충돌하는 것을 방지함은 물론, 위성에 탑재되어 전 지구 해수면의 고도를 수 mm의 정밀도로 관측하기도 한다. 그러나 전파 고도계는 넓은 swath 내의 모든 데이터를 취득하여 이의 평균치로 고도를 측정하기 때문에 해수면과 같이 편평한 지역에서는 정밀 고도 추출이 가능하지만, 지면과 같이 변화가 심한 지형에서의 고도 탐지가 어렵다는 한계가 있다. 이러한 한계를 개선하기 위하여 본 연구에서는 지표면의 고도뿐만 아니라 3차원 위치 좌표까지 효과적으로 추출할 수 있는 간섭계 레이더 고도계 (Interferometric Radar Altimeter, IRA) 신호처리 알고리즘을 제안하였다. 이 방법은 세 개의 센서를 이용한 레이더 간섭기법 (Synthetic Aperture Radar Interferometry, InSAR)을 통하여 비행체로부터 최근거리에 위치하고 있는 타겟의 3차원 지상 좌표를 정밀하게 추출하는 신호처리 기법이다. 본 연구에서는 제안된 신호처리 기법의 정밀도를 분석하기 위하여 약 3,500여 개의 포인트 타겟을 설정하고, RAW 데이터 시뮬레이션 및 70회의 정밀 좌표 추출 시뮬레이션을 수행하였다. 추출된 좌표와 포인트 타겟 간 오차의 평균과 표준편차, Root mean square errors (RMSEs)를 계산하였고, 이러한 결과로부터 IRA 처리 기법의 좌표 추출 정밀도를 분석하였다. 관측 결과 오차의 평균은 x, y, z 방향으로 각각 -0.40 m, -0.02 m, 4.22 m 이며, 오차의 표준편차는 3.40 m, 0.30 m, 4.60 m, RMSE는 각각 3.40 m, 0.30 m, 6.20 m 로 나타났다. y축 방향으로의 오차는 다른 방향에 비해 매우 작았으며, 이는 간섭기법의 정밀도가 높기 때문이다. 이러한 결과는 고도만을 파악할 수 있었던 기존 전파 고도계의 한계를 넘어 제안된 IRA 처리 기법으로 정밀하게 지표면의 3차원 위치를 추출할 수 있음을 지시한다.

Keywords

References

  1. Beckley, B.D., F.G. Lemoine, S.B. Luthcke, R.D. Ray, and N.P. Zelensky, 2007. A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits, Geophys. Res. Lett., 34(L14608): doi: 10.1029/2007GL030002.
  2. Cloude, S.R. and K.P. Papathanassiou, 1998. Polarimetric SAR Interferometry, IEEE. Trans. on Geosci. and Remote Sens., 36(5): 1551-1565. https://doi.org/10.1109/36.718859
  3. Colesanti, C. and J. Wasowski, 2006. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry, Engineering Geology, 88(3-4): 173-199. https://doi.org/10.1016/j.enggeo.2006.09.013
  4. Durand, M., L.-L. Fu, D.P. Lettenmaier, D.E. Alsdorf, E. Rodriguez, and D. Esteban-Fernandez, 2010. The Surface Water and Ocean Topography Mission: Observing Terrestrial Surface Water and Oceanic Submesoscale Eddies, Proc. of the IEEE, 98(5): 766-779. https://doi.org/10.1109/JPROC.2010.2043031
  5. Farina, P., D. Colombo, A. Fumagalli, F. Marks, and S. Moretti, 2006. Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project, Engineering Geology, 88(3-4): 200-217. https://doi.org/10.1016/j.enggeo.2006.09.007
  6. Franceschetti, G. and G. Schirinzi, 1990. A SAR Processor Based on Two-Dimensional FFT Codes, IEEE Trans on Aero. and Electro. Sys., 26(2): 356-366. https://doi.org/10.1109/7.53462
  7. Fu, L.-L., D. Alsdorf, E. Rodriguez, R. Morrow, N. Mognard, J. Lambin, R. Vaze, and T. Lafon, 2010. The surface water and ocean topography (SWOT) mission, Proc. of 2009 OceanObs'09: Sustained Ocean Observations and Information for Society Conference, Venice, Sep. 21-25, ESA Publication WPP-306.
  8. Ghiglia, D.C. and M.D. Pritt, 1998, Two-dimensional phase unwrapping: theory, algorithms and software, John Wiley & Sons, Inc, New York.
  9. Goldstein, R, H. Zebker, and C. Werner, 1988. Satellite radar interferometry: Two-dimensional phase unwrapping, Radio Science, 23(4): 713-720. https://doi.org/10.1029/RS023i004p00713
  10. Hager, J.R., T.R. Burlet, L. Jordan, and J.M. Henrickson, Method and Apparatus for Accurate Phase detection, U.S. Patent WO 03/096067, Nov. 20, 2003
  11. Hein, A., 2004. Processing of SAR data: fundamentals, signal processing, interferometry, Springer.
  12. Hooper, A., H. Zebker, P. Segall, and B. Kampes, 2004. A new method for measuring deformation on volcanoes and other natural terrain using InSAR persistent scatterers, Geophys. Res. Lett., 31(L23611):doi: 10.1029/2004GL021737.
  13. Jung, H.-S., Z. Lu, J.-S. Won, M.P. Poland, and A. Miklius, 2011. Mapping Three-Dimensional Surface Deformation by Combining Multiple-Aperture Interferometry and Conventional Interferometry: Application to the June 2007 Eruption of Kilauea Volcano, Hawaii, IEEE Geosci. Remote Sens. Lett., 8(1): 34-38. https://doi.org/10.1109/LGRS.2010.2051793
  14. Kim, J.-W., Z. Lu, H. Lee, C.K. Shum, C.M. Swarzenski, T.W. Doyle, and S.-H. Baek, 2009. Integrated analysis of PALSAR/ Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands, Remote Sensing of Environment, 113(11): 2356-2365. https://doi.org/10.1016/j.rse.2009.06.014
  15. Lee, D.-T., H.-S. Jung, and G.-W. Yoon, 2010. Development of an Efficient Processor for SIRAL SARIn mode, Korean Journal of Remote Sensing, 26(3): 335-346. https://doi.org/10.7780/kjrs.2010.26.3.335
  16. Rey, L., P. de Chateau-Thierry, L. Phalippou, C. Mavrocordatos, and R. Francis, 2001. SIRAL, A high spatial resolution radar altimeter for the CryoSat mission, Proc. of 2001 International Geoscience and Remote Sensing Symposium, Sydney, Jul. 9-13, vol. 7, pp. 3080-3082.
  17. Rihaczek, A.W. and R.M. Golden, 1971. Range Sidelobe Suppression for Barker Codes, IEEE Trans. on Aero. and Electro. Sys., AES-7(6): 1087-1092. https://doi.org/10.1109/TAES.1971.310209
  18. Rosen, P.A., S. Hensley, I.R. Joughin, F.K. Li, S.N. Madsen, E. Rodriguez, and R.M. Goldstein, 2000. Synthetic aperture radar interferometry, Proceedings of the IEEE, 88(3): 333-382. https://doi.org/10.1109/5.838084
  19. Sandwell, D.T. and E.J. Price, 1998. Phase gradient approach to stacking interferograms, Journal of Geophysical Research, 103(B12): 30183-30204. https://doi.org/10.1029/1998JB900008
  20. Stramondo, S., M. Moro, C. Tolomei, F.R. Cinti, and F. Doumaz, 2004. InSAR surface displacement field and fault modelling for the 2003 Bam earthquake (southeastern Iran), Journal of Geodynamics, 40(2-3): 347-353. https://doi.org/10.1016/j.jog.2005.07.013
  21. Tarchi, D., N. Casagil, R. Fanti, D.D. Leve, G. Luzi, A. Pasuto, M. Pieraccini, and S. Silvano, 2003. Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy, Engineering Geology, 68(1-2): 15-30. https://doi.org/10.1016/S0013-7952(02)00196-5
  22. Tonboe, R.T., L.T. Pedersen, and C. Haas, 2010. Simulation of the CryoSat-2 satellite radar altimeter sea ice thickness retrieval uncertainty, Canadian Journal of Remote Sensing, 36(1): 55-67. https://doi.org/10.5589/m10-027
  23. Wingham, D.J., C.R. Francis, S. Baker, C. Bouzinac, D. Brockley, R. Cullen, P. de Chateau-Thierry, S.W. Laxon, U. Mallow, C. Mavrocordatos, L. Phalippou, G. Ratier, L. Rey, F. Rostan, P. Viau, and D.W. Wallis, 2006. CryoSat: A mission to determine the fluctuations in Earth's land and marine ice fields, Advances in Space Research, 37(4): 841-871. https://doi.org/10.1016/j.asr.2005.07.027
  24. Zebker, H.A. and R.M. Goldstein, 1986. Topographic Mapping From Interferometric Synthetic Aperture Radar Observations, Journal of Geophysical Research, 91(B5): 4993-4999. https://doi.org/10.1029/JB091iB05p04993

Cited by

  1. Simulation Study of Altitude and Angle Estimation with an InSAR Altimeter vol.25, pp.8, 2014, https://doi.org/10.5515/KJKIEES.2014.25.8.838
  2. An Implementation of Interferometric Radar Altimeter Simulator vol.26, pp.1, 2015, https://doi.org/10.5515/KJKIEES.2015.26.1.81
  3. Radial basis function network-based available measurement classification of interferometric radar altimeter for terrain-aided navigation vol.12, pp.9, 2018, https://doi.org/10.1049/iet-rsn.2018.0079
  4. Terrain-Referenced Navigation using an Interferometric Radar Altimeter vol.65, pp.2, 2018, https://doi.org/10.1002/navi.233
  5. A Robust Terrain Aided Navigation Using the Rao-Blackwellized Particle Filter Trained by Long Short-Term Memory Networks vol.18, pp.9, 2018, https://doi.org/10.3390/s18092886
  6. Accurate Measurement Calculation Method for Interferometric Radar Altimeter-Based Terrain Referenced Navigation vol.19, pp.7, 2011, https://doi.org/10.3390/s19071688
  7. CRLB Analysis for a Robust TRN Based on a Combination of RNN and PF vol.21, pp.1, 2011, https://doi.org/10.1007/s42405-019-00208-y
  8. Robust immune particle filter design for terrain‐referenced navigation with interferometric radar altimeter vol.14, pp.9, 2011, https://doi.org/10.1049/iet-rsn.2020.0047
  9. Ant-Mutated Immune Particle Filter Design for Terrain Referenced Navigation with Interferometric Radar Altimeter vol.13, pp.11, 2011, https://doi.org/10.3390/rs13112189