• Title/Summary/Keyword: 평행 링크

Search Result 19, Processing Time 0.026 seconds

Enhancement of 4 Bar Parallelogram Linkage for a Medical Bed (의료용 침대를 위한 평행 4절 링크의 개선)

  • Lee, Youngdae;Kim, Changyoung;Choi, Moonsoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.515-520
    • /
    • 2020
  • The design and actual implementation of the four-bar parallel link was studied in the paper. The parallel four-section link is widely used as a basic kinematic mechanism for transmitting the rotation of one axis to the rotational motion of the other axis. However, the parallel 4 link has a problem that phase reversal occurs at the turning point during the movement. In order to prevent the link reversal, it is known that a double parallelogram-type link is formed by attaching an additional phase reversal suppression link with an offset. However, as a result of the actual fabrication experiment, the movement is not smooth at the transition point. In order to solve this problem, in this study, a link for smooth movement is added in addition to a link that provides an offset to prevent phase reversal, so that the phase reversal does not occur at a specific point when the driven shaft rotates along the drive shaft. The test result confirms the validity of our suggestion.

A Study on the Position Control of the parallelogram link DD Robot Using Neural Network (신경회로망을 이용한 평행링크 DD로봇의 위치제어)

  • 김성대
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.64-71
    • /
    • 1999
  • In this paper, two degree of freedom parallelogram link mechanism is used as DD(Direct-drive) robot mechanism. In parallelogram link mechanism, two motors being established in each base frame, the mass of motor itself is not loaded to anther motor; the number of links are increased, the mass of arm being lighter; with the estabilishment of link parameter, nonlinearity such as the centrifugal force disappears; at the same time anti-interference between motors can be realized. And to realize highy-accurate drive of parallelogram link DD robot manipulator, to improve the learning speed through the design of leaning control system using neural network, to raise adapting power to the varied work objects; the learning control algorithm is composed of neural network and feedback controller in this paper.

  • PDF

Study for Position Control of Two-degree Parallel Link Robot Using QFT(Quantitative Feedback Theory) (QFT(Quantitative Feedback Theory)를 이용한 2 자유도 평행 링크 로봇의 위치 제어에 관한 연구)

  • 강민구;변기식;최연욱;황용연
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.97-100
    • /
    • 2001
  • This paper introduces that it minimizes interference between links at high speed trajectory tracking of 2-degree parallel link robot. And in spite of system uncertainty, it introduces controller design method which is satisfied with performance specification. To do these, we separate two channels from parallel link robot through ICD(Individual Channel Design) and design controller of each channel using QFT(Quantitative Feedback Theory). Finally, we make sure of robustness and excellence of QFT control1er through simulation and experiment.

  • PDF

Vibration Control of a Robot Manipulator with a Parallel Drive Mechanism (평행구동방식 로봇 조작기의 진동제어)

  • 최승철;하영균;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2015-2025
    • /
    • 1991
  • A long and light-weight forearm of the vertical 2 DOF robot manipulator with a heavy payload driven by parallel drive mechanism is modelled as a Euler-Bernoulli beam with a tip mass subjected to a high speed rotation. Governing equation is obtained by Hamilton's principle and represented as state variable form using the perturbed variables which describe the perturbed errors at the manipulator's final configuration. Digitial optimal control and observer theory are used to suppress the forearm vibration and control the positions of the joint angles with measured/estimated state feedback. Computer simulations and experimental results are obtained and compared each other.

Landing Performance of a Quadruped Robot Foot Having Parallel Linked Toes on Uneven Surface (평행링크형 발가락을 갖는 4족 보행로봇 발의 비평탄 지면 착지 성능)

  • Hong, Yeh-Sun;Yoon, Seung-Hyeon;Kim, Min-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.47-55
    • /
    • 2009
  • In this study, a robot foot having toes for firm stepping on uneven surface is proposed. The toes are connected to the lower leg by parallel links so that the lower leg can rotate in the rolling and pitching directions during stance phase without ankle joint. The landing performance of the foot on uneven surface was evaluated by relative comparison with that of the most common foot making point contact with the walking surface, since the test conditions considering real uneven surface could be hardly defined for its objective evaluation. Anti-slip margin(ASM) was defined in this study to express the slip resistance of a robot foot when it lands on a projection with half circular-, triangular- or rectangular cross section, assuming that uneven surface consists of projections having these kind of cross sections in different sizes. Based on the ASM analysis, the slip conditions for the two feet were experimentally confirmed. The results showed that the slip resistance of the new foot is not only higher than that of the conventional point contact type foot but also less sensitive to the surface friction coefficient.

Modularized Flexure-Hinge Nanopositioner Based on Four-Bar-Link-Mechanism (4절 링크구조를 응용한 플랙셔 힌지 기반 모듈형 나노포지셔너)

  • Chae, Ki-Woon;Bae, Jin-Hyun;Jeong, Young-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.851-858
    • /
    • 2011
  • Nanopositioning technologies play an important role in the progress of electronics, optics, bio-engineering and various nano-scale technologies. As a result, various practical nanopositioning methods have been successfully introduced. Flexure mechanism is a valuable method in nanopositioning because of smooth and friction-free motion and the infinitesimal movement near to sub-nm. In this study a modularized nanopositioner based on parallelogram four-bar linkage structure with right-circular flexure hinge was developed. The positioning performance of a single axis nanopositioner and a XY nanopositioner which was extended from single axis one were demonstrated using control experiments. Consequently, it was shown that the developed single axis nanopositioner possessed high performance and could be extended to various multi-axis nanopositioners.

Development of Three D.O.F. Alignment Stage for Vaccume Environment (진공용 3 자유도 얼라인먼트 스테이지 개발)

  • 박희재;박종호;한상진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.551-554
    • /
    • 2000
  • Alignment system is a system to locate an object to it's accurate position in multi-d.o.f space. According to process of application, it is need to align an object in 3 or 6 d.o.f. space. And alignment system is used in various environments. Especially in PDP application, alignment process is carried out in vaccume environment. In this paper, we developed 3 d.o.f. alignment system for vaccume environment, performed kinematic analysis and improved it's positional accuracy.

  • PDF

Robust QFT(Quantitative Feedback Theory) Controller Design of Parallel Link (평행링크 매니퓰레이터의 강인한 QFT(Quantitative Feedback Theory)제어기 설계)

  • Kang, Min-Goo;Byun, Gi-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2249-2251
    • /
    • 2001
  • This paper proposes that it minimizes interference between link at high speed trajectory tracking of 2-degree parallel link manipulator and QFT(Quantitative Feedback Theory) controller which robust structure uncertainty and disturbance of plant. And using ICD(Individual Channel Design), it separates two channel from multivariable system, parallel link manipulator and designs robust controller with applying MISO QFT to each channel. Finally, we make sure of robustness and excellence of QFT controller through simulation and experiment.

  • PDF

Real-time direct kinematics of a double parallel robot arm (2단 평행기구 로봇 암의 실시간 순방향 기구학 해석)

  • Lee, Min-Ki;Park, Kun-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.144-153
    • /
    • 1997
  • The determination of the direct kinematics of the parallel mechanism is a difficult problem but has to be solved for any practical use. This paper presents the efficient formulation of the direct kinematics for double parallel robot arm. The robot arm consists of two parallel mechanism, which generate positional and orientational motions, respectively. These motions are decoupled by a passive central axis which is composed of four revolute joints and one prismatic joint. For a set of given lengths of linear actuators, the direct kinematics will find the joint displacements of th central axis from geometric constraints in each parallel mechanism. Then the joint displacements will be converted into the position and the orientation of the end effector of the robot arm. The proposed formulation is decoupled and compacted so that it will be implemented as a real-time direct kinematics. With the proposed formulation, we analyze the motion of the double parallel robot and show its characteristics. Specially, we investigate the workspace in terms of positional space as well as orientational space.

Study of Local Performance Index of 2-DOF Parallel Manipulator (2 자유도 병렬형 매니퓰레이터의 지역 성능지수에 관한 연구)

  • Lee, Jong Gyu;Yang, Seung Han;Lee, Sang Ryong;Lee, Choon Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.89-95
    • /
    • 2013
  • This study investigates a parallel manipulator that can move over two parallel sliders and in which the end-effector of the manipulator can be adjusted arbitrarily. Through the direct and inverse kinematics of the manipulator, position equations are derived. These equations represent the relationship between the positions of the sliders and the position of the end-effector. The Jacobian matrices of the direct and inverse kinematics are obtained by these equations. By using the condition number defined from these matrices, the local performance index of the manipulator is proposed. By using the simulation results of the performance index, we find that the manipulator can smoothen movements in only one quadrant and that the distribution of the maximal performance index is affected by the ratio of the length of links and the orientation of the end-effector.