• Title/Summary/Keyword: 평행사변형의 넓이

Search Result 8, Processing Time 0.017 seconds

Examining Students' Conceptions about the Area of Geometric Figures (초등학교 학생들의 넓이 개념 이해도 조사 - 초등학교 6학년 학생들을 중심으로-)

  • Na, Gwisoo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.3
    • /
    • pp.451-469
    • /
    • 2012
  • This research intends to examine how 6th graders (age 12) conceptualize the area of geometric figures. In this research, 4 problems were given to 122 students, which the 4 problems correspond to understanding area concept, finding the area of geometric figures-including rectangular, parallelogram, and triangle, writing the area formula for finding area of geometric figures, and explaining the reason why the area formula holds. As the results of the study, we identified that students revealed the most low achievement in the understanding area concept, and lower achievement in explaining the reason why the area formula holds, writing the area formula, finding the area of geometric figures in order. In based on the results, we suggested the didactical implication for improving the students' conception about the area of geometric figures.

  • PDF

Children's Understanding of Relations in the Formulas for the Area of Rectangle, Parallelogram, and Triangle (직사각형, 평행사변형, 삼각형 넓이 공식에 내재된 관계에 대한 초등학생들의 이해 조사)

  • Jeong, Gyeong-Soon;Yim, Jae-Hoon
    • Journal of Educational Research in Mathematics
    • /
    • v.21 no.2
    • /
    • pp.181-199
    • /
    • 2011
  • The area formula for a plane figure represents the relations between the area and the lengths which determine the area of the figure. Students are supposed to understand the relations in it as well as to be able to find the area of a figure using the formula. This study investigates how 5th grade students understand the formulas for the area of triangle, rectangle and parallelogram, focusing on their understanding of functional relations in the formulas. The results show that students have insufficient understanding of the relations in the area formula, especially in the formula for the area of a triangle. Solving the problems assigned to them, students developed three types of strategies: Substituting numbers in the area formula, drawing and transforming figures, reasoning based on the relations between the variables in the formula. Substituting numbers in the formula and drawing and transforming figures were the preferred strategies of students. Only a few students tried to solve the problems by reasoning based on the relations between the variables in the formula. Only a few students were able to aware of the proportional relations between the area and the base, or the area and the height and no one was aware of the inverse relation between the base and the height.

  • PDF

A Study on Teaching Method of Area Formulas in Plane Figures - Inductive Reasoning vs. Problem Solving - (평면도형의 넓이 지도 방법에 대한 고찰 - 귀납적 방법 대 문제해결식 방법 -)

  • Kang, Moonbong;Kim, Jeongha
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.3
    • /
    • pp.461-472
    • /
    • 2015
  • Korean students are taught area formulas of parallelogram and triangle by inductive reasoning in current curriculum. Inductive thinking is a crucial goal in mathematics education. There are, however, many problems to understand area formula inductively. In this study, those problems are illuminated theoretically and investigated in the class of 5th graders. One way to teach area formulas is suggested by means of process of problem solving with transforming figures.

The Effects of Inquiry Oriented Instruction on the Learning of A rea Formulas (수학적 탐구학습이 넓이공식의 학습에 미치는 효과)

  • Park, Sung-Sun
    • Education of Primary School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.43-55
    • /
    • 2011
  • The purpose of this study was to investigate the effects of inquiry oriented instruction on the learning of area formulas. For this purpose, current elementary mathematics textbook(2007 revised version) which deal with area formulas was reviewed and then the experimental research on inquiry oriented instruction in area formulas was conducted. The results of this study as follow; First, there was no significant effect of inquiry oriented instruction on the mathematical achievement in area formula problems. Second, there was no significant effect on the memorization of area formulas. Third, there was significant effect on the generalization of area formulas. Forth, there was significant effect on the methods of generalization of area formulas. Fifth, through inquiry activities, the students can learn mathematical ideas and develop creative mathematical ideas. Finally, implications for teaching area formulas through inquiry activity was discussed. We have to introduce new area formula through prior area formulas which had been studied, and make the students inquire the connection between each area formulas.

A Study of Teaching about Areas of Plane Figures through Open Instruction Method - On Parallelogram, Triangle, Trapezoid and Rhombus- (개방형법에 따른 평면도형의 넓이 지도에 대한 연구 -평행사변형, 삼각형, 사다리꼴, 마름모를 중심으로-)

  • Lim, A-Reum;Park, Young-Hee
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.2
    • /
    • pp.361-383
    • /
    • 2011
  • This study is on teaching about the areas of plane figures through open instruction, which aims to discover the pedagogical meanings and implications in the application of open methods to math classes by running the Math A & B classes regarding the areas of parallelogram, triangle, trapezoid and rhombus for fifth graders of elementary school through open instruction method and analyzing the educational process. This study led to the following results. First, it is most important to choose proper open-end questions for classes on open instruction methods. Teachers should focus on the roles of educational assistants and mediators in the communication among students. Second, teachers need to make lists of anticipated responses from students to lead them to discuss and focus on more valuable methods. Third, it is efficient to provide more individual tutoring sessions for the students of low educational level as the classes on open instruction methods are carried on. Fourth, students sometimes figured out more advanced solutions by justifying their solutions with explanations through discussions in the group sessions and regular classes. Fifth, most of students were found out to be much interested in the process of thinking and figuring out solutions through presentations and questions in classes and find it difficult to describe their thoughts.

  • PDF

Process Analysis on Mathematical Communication and Analogical Thinking through Trapezoid's Area Obtaining Activity (사다리꼴 넓이 구하기 활동에서 나타나는 수학적 의사소통과 유추적 사고 과정 분석)

  • You, Sanghwuy;Song, Sang Hun
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.2
    • /
    • pp.253-267
    • /
    • 2013
  • The newly revised mathematics curriculum of 2007 speaks of ultimate goal to develop ability to think and communicate mathematically, in order to develop ability to rationally deal with problems arising from the life around, which puts emphasize on mathematical communication. In this study, analysis on mathematical communication and analogical thinking process of group of students with similar level of academic achievement and that with different level, and thus analyzed if such communication has affected analogical thinking process in any way. This study contains following subjects: 1. Forms of mathematical communication took placed at the two groups based on achievement level were analyzed. 2. Analogical thinking process was observed through trapezoid's area obtaining activity and analyzed if communication within groups has affected such process anyhow. A framework to analyze analogical thinking process was developed with reference of problem solving procedure based on analogy, suggested by Rattermann(1997). 15 from 24 students of year 5 form of N elementary school at Gunpo Uiwang, Syeonggi-do, were selected and 3 groups (group A, B and C) of students sharing the same achievement level and 2 groups (group D and E) of different level were made. The students were led to obtain areas of parallelogram and trapezoid for twice, and communication process and analogical thinking process was observed, recorded and analyzed. The results of this study are as follow: 1. The more significant mathematical communication was observed at groups sharing medium and low level of achievement than other groups. 2. Despite of individual and group differences, there is overall improvement in students' analogical thinking: activities of obtaining areas of parallelogram and trapezoid showed that discussion within subgroups could induce analogical thinking thus expand students' analogical thinking stage.

  • PDF

An Analysis on the Concept and Measuring Activities of the Height of Figures in Elementary School Mathematics Textbooks2 (초등학교 수학 교과서에 서술된 높이 개념과 측정 활동 분석)

  • Paek, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.19 no.2
    • /
    • pp.113-125
    • /
    • 2016
  • The concept and measuring activities of the height of figures are essential to find the areas or volumes of the corresponding figures. For plane figures, the height of a triangle is defined to be the line segment from a vertex that is perpendicular to the opposite side of the triangle, whereas the height of a parallelogram(trapezoid) is defined to be the distance between two parallel sides. For the solid figures, the height of a prism is defined to be the distance of two parallel bases, whereas the height of a pyramid is defined to be the perpendicular distance from the apex to the base. In addition, the height of a cone is defined to be the length of the line segment from the apex that is perpendicular to the base and the height of a cylinder is defined to be the length of the line segment that is perpendicular to two parallel bases. In this study, we discuss some pedagogical problems on the concepts and measuring activities of the height of figures to provide alternative activities and suggest their educational implications from a teaching and learning point of view.

A Study on the Design of Teaching Units for Teaching and Learning of Secondary Preservice Teachers' Mathematising: Reinvention of Bretschneider's Formula (수학화 교수.학습을 위한 교수단원 디자인 연구: 브레트슈나이더 공식의 재발명)

  • Park, Kyo-Sik
    • School Mathematics
    • /
    • v.8 no.3
    • /
    • pp.327-339
    • /
    • 2006
  • In this study, a teaching units for teaching and learning of secondary preservice teachers' mathematising is designed, focusing on reinvention of Bretschneider's formula. preservice teachers can obtain the following through this teaching units. First, preservice teachers can experience mathematising which invent a noumenon which organize a phenomenon, They can make an experience to invent Bretscheider's formula as if they invent mathematics really. Second, preservice teachers can understand one of the mechanisms of mathematics knowledge invention. As they reinvent Brahmagupta's formula and Bretschneider's formula, they understand a mechanism that new knowledge is invented Iron already known knowledge by analogy. Third, preservice teachers can understand connection between school mathematics and academic mathematics. They can understand how the school mathematics can connect academic mathematics, through the relation between the school mathematics like formulas for calculating areas of rectangle, square, rhombus, parallelogram, trapezoid and Heron's formula, and academic mathematics like Brahmagupta's formula and Bretschneider's formula.

  • PDF