• Title/Summary/Keyword: 평면탄성문제

Search Result 40, Processing Time 0.026 seconds

Inelastic Nonlinear Analysis of Plane Truss Structures Using Arc-Length Method (호장법을 이용한 평면 트러스 구조의 비탄성 비선형 해석)

  • Kim, Kwang-Joong;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane forte by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. the spatial structure should be analyzed by nonlinear analysis regardless static and dynamic analysis because it accompanys large deflection for member. To analyze the spatial structure geometrical and material nonlinearity should be considered in the analysis. In this paper, a geometrically nonlinear finite element model for plane truss structures is developed, and material nonlinearity is also included in the analysis. Arc-length method is used to solve the nonlinear finite element model. It is found that the present analysis predicts accurate nonlinear behavior of plane truss.

  • PDF

Development of Numerical Analysis and Optimization AIgorithms for Orthotropic Continuous Curved Floor Slab Systems (이방성 연속 곡평면 슬래브 시스템의 수치해석과 최적화 알고리즘의 개발)

  • Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.1-15
    • /
    • 1992
  • A Practical and easily applicable methods for the numerical analysis and the optimum design of continuous and horizontally curved two-way slab systems with twelve possible edge conditions are presented. The proposed method for the numerical structural analysis is based on the use of design moment coefficients which are derived from the elastic theory of thin curved plates. The optimum values are selected from within the feasible region in the design space defined by the limit state requirements. The sequential linear programming is introduced as an analytical method of nonlinear optimization. The optimum design variables, including a effective depth and transformed steel ratios per unit width of middle and column strips of slabs, are then determined.

  • PDF

Influence of Stress Shape Function on Analysis of Contact Problem Using Hybrid Photoelasticity (광탄성 실험 하이브리드 법에 의한 접촉응력 해석시 응력형상함수의 영향)

  • Shin, Dong-Chul;Hawong, Jai-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.345-352
    • /
    • 2013
  • In this research, a study on stress shape functions was conducted to analyze the contact stress problem by using a hybrid photoelasticity. Because the contact stress problem is generally solved as a half-plane problem, the relationship between two analytical stress functions, which are compositions of the Airy stress function, was similar to one of the crack problem. However, this relationship in itself could not be used to solve the contact stress problem (especially one with singular points). Therefore, to analyze the contact stress problem more correctly, stress shape functions based on the condition of two contact end points had to be considered in the form of these two analytical stress functions. The four types of stress shape functions were related to the stress singularities at the two contact end points. Among them, the primary two types used for the analysis of an O-ring were selected, and their validities were verified in this work.

Shape Optimal Design of Elastic Concrete Dam (탄성콘크리트 댐의 모양최적설계)

  • Yoo, Yung Myun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.9-14
    • /
    • 1985
  • In this research mass of a plane strain two dimensional elastic concrete dam under gravitational and hydrostatic loads is minimized, through shape optimization of the dam cross section. Cross sectional area of the dam is taken as cost function of the optimization problem while constraints on the principal stress distribution and dam thickness are imposed. Shape of the boundary of the model is chosen as design variable. Variational formulation of the optimization problem, the material derivative idea of continuum mechanics, and an adjoint variable method are employed for the shape design sensitivity calculation. Then the gradient projection algorithm is utilized to obtain an optimum design iteratively. Research results fully demonstrate that the theory and procedure adopted are quite efficient and can be applicable to a wide class of practical elastic structural design problems.

  • PDF

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.

Infinite Element for the Scaled Boundary Analysis of Initial Valued on-Homogeneous Elastic Half Space (초기값을 갖는 비동질무한영역의 해석을 위한 비례경계무한요소법)

  • Lee, Gye-Hee;Deeks, Andrew J.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.199-208
    • /
    • 2008
  • In this paper, to analyze the initial valued non-homogeneous elastic half space by the scaled boundary analysis, the infinite element approach was introduced. The free surface of the initial valued non-homogeneous elastic half space was modeled as a circumferential direction of boundary scaled boundary coordinate. The infinite element was used to represent the infinite length of the free surface. The initial value of material property(elastic modulus) was considered by the combination of the position of the scaling center and the power function of the radial direction. By use of the mapping type infinite element, the consistent elements formulation could be available. The performance and the feasibility of proposed approach are examined by two numerical examples.

Approximately Coupled Method of Finite Element Method and Boundary Element Method for Two-Dimensional Elasto-static Problem (이차원 탄성 정적 문제를 위한 유한요소법과 경계요소법의 근사 결합 방법)

  • Song, Myung-Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.3
    • /
    • pp.11-20
    • /
    • 2021
  • In this paper, the approximately coupled method of finite element method and boundary element method to obtain efficient and accurate analysis results is proposed for a two-dimensional elasto-static problem with a geometrically abruptly changing part. As the finite element of a two-dimensional problem, three-node and four-node plane stress element is applied, and as the boundary element of a two-dimensional problem, three-node boundary element is applied. In the modeling stage, firstly, an entire analysis target object is modeled as finite elements, and then a geometrically abruptly changing part is modeled as boundary elements. The boundary element is defined using the nodes defined for modeling finite elements. In the analysis stage, finite element analysis is firstly performed on a entire analysis target object, and boundary element analysis is automatically performed afterwards. As for the boundary conditions at boundary element analysis, displacement conditions and stress conditions, which are the results of finite element analysis, are applied. As a numerical example, the analysis results for a two-dimensional elasto-static problem, a plate with a crack, are presented and investigated.

Optimal Design of Structural Componets with Thickness and Shape Variatins (두께와 모양 변화를 통한 구조물의 최적설계)

  • 유영민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.119-126
    • /
    • 1985
  • 형상은 3차원이지만 2차원 문제로 이상화하여 해석할 수 있는 탄성구조물의 최적설계를 내연기관 연결봉(Connecting Rod)을 예제로 사용하여 진행하였다. 연결봉은 각 부위에서의 두께는 다르나 평면응력상태에 있다고 가정하였다. 연결봉의 질량을 최소화하기 위해 두께의 분포 및 2차원 모델 경계의 모양을 설계변수로 채택하였고 설계변수 및 응력치에 대한 제한조건을 적용하였다. 설계감도계수 계산을 위해 Variational Formulation, Material Derivative, Adjoint Variable이론을 도입하였고 최적화 방법으로는 Gradient Projection Method를 사용하였다. 최적설계 결과 현재 사용중인 연결봉 무게의 20%를 줄일 수 있음이 밝혀졌다.

Stability Design of Steel Frames considering Initial Imperfection based on Second-Order Elastic Analysis (2차 탄성해석을 이용한 강뼈대구조의 초기결함 좌굴설계)

  • Kyung, Yong Soo;Lee, Chang Hwan;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.465-474
    • /
    • 2008
  • Generally design of frame structures composed of beam-column member is accomplished by stability evaluation of each member considering the effective buckling length. This study selects a member of the smallest non-dimension slenderness ratio using the buckling eigenvalue calculated by the elastic buckling eigen-value analysis and axial force of the each member, and decides the initial deflection quantity reflected geometric and material nonlinearities from a suggested equation on the base of standard strength curve of Korea Bridge Design Code. Second-order elastic analysis applying the initial deflection is executed and the stability of each member is evaluated and decides ultimate strength. Through examples of eight-stories and four-stories plane frame structures, the evaluation of the stability is compared with the existing method and ultimate strength of the suggested method is compared with ultimate strength by the nonlinear inelastic analysis. Through these procedures, the increasing of effective buckling length by elastic buckling eigenvalue analysis is prevented from a new design method that considers initial imperfections. And the validity of this method is proved.

Application of Suggested Equations to determine the Elastic Constants of A Transversely Isotropic Rock from Single Specimen (평면이방성 암석의 단일시험편에서 탄성상수 결정에 제안된 수식들의 적용연구)

  • Park, Chul-Whan;Park, Chan;Jung, Yong-Bok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.153-168
    • /
    • 2010
  • A fifth equation is required to determine the five independent elastic constants of a transversely isotropic rock from compression test of a single specimen. As an approximation proposed by Saint-Venant has been used for long time, it may cause an erroneous result in some cases, especially for specimen with low angle of anisotropy. Three equations were suggested replacing this traditional equation and proved to be applicable by the model analysis in the previous studies. As Saint-Venant's approximation is turned out the same as the first one of them, it has the characteristics that the apparent Young's modulus is monotonously increasing according to the anisotropic angle. The methodology to analyze the elastic constants from four independent strain measurements by uniaxial compressive test of a single standard specimen is concisely described, and the necessity and compatibility of new suggested equations are discussed. Saint-Venant's approximation can determine the elastic constants close to true values and other equations may be unnecessary in specimens with medium to large angle. Nevertheless, they may become applicable because they can produce the almost same amount. For the specimens of small angle of anisotropy, Saint-Venant's approximation may result in out of general ranges or thermodynamic constraints, but other suggested equations can produce the almost true value. Thus they can be applied before other alternative equation is known. The guide map constructed by model study may decide the most compatible one of the three equations.