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1. Introduction

An extenive literature has developed on
optimization of structures and structural compo-
nents whose shapes are defined by cross section
and thickness variables”, In most treatments
of such structural design problems, calculus of
variations on a fixed domain and an adjoint
variable technique are used to calculate design
sensitivity. Shape optimization for problems of
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applied physics has been investigated exten-
sively by Cea, using variational methods of
boundary-value problem formulation‘®. In this
paper a variational formulation of the equations
of elasticity, the material derivative of con-
tinuum mechanics, and an adjoint variable
technique are pressented for calculation of
design sensitivity of a functional defined on a
domain whose shape is continuously changed.
The procedure developed has been successfully
applied for shape optimization of simple elastic
structures in references 3 and 4. The theories
are combined here for optimization of an
engine connecting rod whose thickness distri-
bution and shape are taken as design variables.
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2. Description of the Structural Component

An engine connecting rod connects the crank
shaft and piston pin of an engine, transmitt-
ing axial compressive load during firing and

axial tensile load during the suction cycle of .

the exhaust stroke. The gemetry of the con-
necting rod considered is shown in Fig. 1.
Considering that the loads acting on the rod
are in a plane and the rod deforms mainly in
a plane, one can reasonably assume that the

AN

rod is in a plane stress state.

The domain and boundary of the system
are denoted as Q and I', respectively. The
boundary I’ is composed of six parts; 'y thr-
ough I, as shown in Fig. 2. Segments I,
and I, are boundaries at which the connecting
rod touches the crank shaft and the piston
pin, respectively, Their shapes are fixed during
the design process. The boundaries I'; and I's
of the shank and neck regions of the rod are
to be determined through the optimization

process. Since the main interest of shape opt-

X1
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Fig. 1 Engine connecting rod

Fig. 2 Boundaries and Q,
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imal design rests on the shank and neck reg-
ions, one may keep the shape of boundaries I,
and I'y fixed. In shape optimization of the
connecting rod, one wishes to determine the
optimum thickness distribution, which varies
independently from the domain shape variation,
as well as the shapes of I’y and ['5. With the
main interest on the shank and neck regions,
thickness distribution in the hatched area Q,
of Fig. 2 is to be determined through the
optimization process.

To satisfy the condition that the distance
between the piston pin and the crank shaft is
prescribed, it is required that every point in
the rod not move in the x;-direction. Hence,
points on [’y and 'y are allowed to move only
in the x,-direction.

Since the system is assumed to be quasi-
static, without body force, boundary conditions
are

TJtl=0""(2Dn., m=1,2, I=1,2, on I’

2t=[2z!, 2,}]7=0, /=1, 2, at one point A}(1)

2,'=0, [=1,2, at another point B
where 7%, 2!, and » are two dimensional
vectors of surface traction, displacement due
to 7% and outward unit normal on I, resec-
tively. The superscript [ denotes the loading
case (/=1 for inertia load and /=2 for firing
load, as shown in Fig. 1 and ¢%(2") denotes
components of the stress tensor due to displa-
cement 2. The kinematic boundary conditions
of Eq. 1 are imposed to eliminate rigid body
motion of the rod, which is reasonable because
the loads acting on the rod are in self-equili-
brium. For convenience, point A is selected
on I'y and point B is on [I's, where shapes
are not changed.

One can define a set Z of kinematically
admissible displacements of the system as

z={z=[zy, 21" : z&[H(Q)]* 2=0
at point 4 and z,=( at point B} @

where [HY(Q)1*=H(Q)xH(Q) is the pro-
duct of Sobolev spaces of order one®. The
variational form of the equations of elasticity
for the system is to find z'Z that satify

(gD @nd={ hT'zdr, 1=1,2 (3)

for all virtual displacements z&Z, where 4
and ¢"*(Z) denote the thickness distribution
function in Q and components of the strain
tensor when one treats Z as a displacement
vector, respectively. One can use the finite
element method to solve Eq. 3 numerically.

3. Formulation of the Optimal Design Problem

Volnme of the connecting rod is the cost
functional in the design process,

7y={ hdQ )

The design problem is to find the shapes of
Iy and I's and the thickness distribution /£ in
Q,, subject to the following conditions:

3.1. Stress Constraints
Lower and upper bounds are imposed on
principal stresses of inertia and firing loads,
in the form
o<y, in Q
or<oy!, in Q}
for the inertia load and
0,2 <dur, In Q
o <o5?, in Q] ®
for the firing load, where ¢.r and ov; denote

Q)

lower and upper bounds on principal stress of
the inertia load and o and oyr correspond
to those of the firing load. In Egs. 5 and 6,
ot and ¢,' denote principal stresses of loading
case [,

o () +022(2)
2

+/[ 011(2!)Ea22(21) :I2+(0.12(Zz>>2 o

Ull:
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o112 +02(2h)
2

_/[ 011(21)5‘722(31) ]2+(012<Zz))2

0'2’2

3.2. Thickness Constraint

Thickness # in the hatched area of Fig. 2
must be bounded away form zero. Hence, the
thickness constraint is given as

—h+¢<0, in Q ®

where % and ¢>( denote the thickness distribu-
tion function and its lower bound, respectively.

The pointwise constraints of Egs. 5 and 6
ear transformed to functional constraints on
every finite element, using a mollifier or ave-
raging method®, as

gu={, Mgida={ MgdQ<0,

j=1,+-,NEL, i=1,2, I=1,2 @
where NEL, Q;, and M; denote the number
of elements, the subdomain of each element,
and a mollifier function(M;>0, M;=0 off Q;,
and SD,degzl) defined on Q. InEq. 9, the
indices / and i denote loading and principal
stress numbers, respectively, and ¢! is a
function of principal stresses, which is obtained
from Eqgs. 5 and 6; e.g.,
@2’ = —0,’ +constant ao
in eq. 5.

4. Design Sensitivity Analysis

Before speaking of an optimum shape, one
must define variation of the shape of a com-
ponent. The approach adopted here is illustrated
in Fig. 3, using the idea of a design velocity
field V(X) that defines the direction of mov-
ement of all points X in the nominal domain
Q to points x in a deformed domain Q,, given
by the transformation x=X-+¢V(X). As the
step size parameter { approaches 0, the defor-
med domain (. approaches the undeformed

Fig. 3 Domain shape variation

domain; ie., Q=Q,.

For a given design velocity ¥, one may
write the state z' as a function of £ 1ie.,
2 (X+tV(X)). Defining z¥=0z,/(X)/0t, one
may use the material derivative of continuum
mechanics®* to calculate the variation of an
integral ¥ :SQ,G<Z’t>dQ" to obtain

0T = SQG,,zv dQ+SPG(z’) Vewdl (1D

where # is the outward unit normal on the
boundary I". The first term in Eq. 11 may be
viewed as taking the derivative with respect
to ¢ inside the integral and the second term
represents the contribution due to normal mo-
vement V-.n of the boundary. Using Eaq. 11,
one obtains

o = g ShdQ+ SPhV- ndl' a2
L= . a¢il mn ’
0= [ M2 av(2)d a®

while Eq. 12 is written directly in terms of
design variations, Eq. 13 involves the direc-
tional derivative 2 of state. To rewrite this
term as a function of design wvariation, one
interprets the first term on the right of Eq. 13
as a virtual work that is associated with a
virtual displacement z and defines 2! as the
solution of the adjoint equation

Saom(]m)amn(j)hdg
= . a¢il mn(y
which must hold for all 7=Z. One may now

take the variation of both sides of Eq. 3 to
obtain
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(o™ (@& (Dh+amn()em (2 h
+omn(2)enn(2)oh}dQ
+{ om(Dem DRV ndl

= Srh Tv.z'dl 15)

which must hold for all Z&Z. In this example,
Z’ is kinematically admissable, so since 2* is
the solution of Eg. 3, terms involving 2’ in
Eq. 15 cancel

To evaluate the term on the right of Eq.
13, one may now evaluate Eq. 14 at 2=2z",
Eq. 15 at 2=2%, use Betti's reciprocal formula,
and obtain

5wijl — _Snamn(zl)amn()‘iﬂ)ahd Q
—Sra""‘(z‘)a’""(x"“)h Vendl (16)

To use this result comptationally, one may
parameterize the thickness function A(xy, X,)
to be piecewise constant over strips of finite
elements running along the shank. In the
present model, 48 such strips are defined, as
shown in Fig. 4. Similarly, one may param-
eterize the boundary by making it piecewise
linear, defining the distance of nodes at corner
points from the centerline of the rod as design

73
72

parameters. In this example, 38 such boundary
node locations are taken as design parameters,
as shown in Fig. 5, for a total of 86 design
parameters. One may thus write expressions
for thickness variation in terms of design par-
meter variation, in the form 04=B(x,, x,)0b in
and normal movement of the boundary as V-
n=A(xy, x,)0b on I'. Substituting these expre-
ssions into Eqs. 12 and 16, one has

o= By, 2)d0Q
+{ e, 2 A, 2)aT |98 an
o= { omn(aer (i By, 2dQ
+{ 07 (e (RORA(x,, 2)AT |8
(18)

5. Optimization Algorithm

With the preceding design sensitivity analysis
results, one can apply an iterative optimization
algorithm. In this paper, a gradient projection
methed® is used to numberically solve the
optimal design problem; i.e., find a design that
minimizes the cost functional &, subject to
the constraints

74 84
73 79

69 80 5
70 81

71 82 6
70 8

X 8 5
75 22 e
74 %

Note: Numbers in the figure denote
design parameter numbers

Fig. 4 Assignment of thickness design parameters in Q,
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T,=0, P=l;2,74 } (19)
7,<0, p=q¢'+1,,q
Equations 17 and 18 can be written, in

general form, as

o0 ,=12"3b, p=0,1,-,¢ )
where /# denotes the design sensitivity vetor.
If AT, is the desired change in constraint p,
one wishes to find db to decrease &, as possible
and to satisfy
=—AV,, p=1,-¢ 21
<A, T,>—e, p=q¢ +1,,q
where ¢ is a small positive constant defining

l 1"'5[){

those inequality constraints that are treated as
g-active.

In order to assure that the linear approxma-
tions employed in obtaining Egs. 20 and 21 are
valid, it is demanded that db be small in the
quaratic sense; i.e.,

06T Wob=¢&2 22)
where £ is a small parameter and W is a
positive definite weighting matrix. For con-
venience, deifne a set of indices

A={a:a=1,-+¢, and a>¢

for which #.(2% 6%)>—¢}
and a column vector & of elements ¥, with
ac=A,

¥= [ogaA] 23

The generalized steepest deScent algorithm®
nsed here is summarized as follows:

Step 1. Make an engineering estimate 5° of
the optimum design.

Step 2. Solve Eq. 3 for 2° corresponding to
b

Step 3. Check constraints and form & of
Eq. 23.

Step 4. Solve adjoint equations given by Eq.
14 for constraints ¥.

Step 5. Compute /# in Eq. 20 and form [/
corresponcing to the costraints in @.

Step 6. Choose AT and the step-size param-

eter 7, on the first iteration. Hold
70 constant or adjust to speed conv-

ergence.

Step 7. Compute Mye and Mys,, given as
My, =T W-1[° 24
er =~1T w- 1.'l (25>

Steep 8. Calculate #, @', and # from
Muyg ' = — Myr, (26)
My =AU @7
a=pg'=42r.a (28)

If any component of # is negative, delete

the corresponding component of & and

return to Step 3, otherwise contiune.
Step 9. Compute §b! and 85 given by

Sbt=W-[]o+ 5] 29

obr=W-ip2 (30)
Step 10. compute

—roaf L1 sy

b=b +< T +5b2) D)

Step 11. If |&y(B)—T(d°)| and ||6bl|| are
sufficiently small, terminate. Other-
wise return to Step 2 with #° repl-
aced by b.

6. Numerical Results

Numerical results presented in this paper are
based on the following input data: E=2.07X
10°MPa, »=0.298, 0w:=136MPa, oc.=—80
MPa, oyr=36MPa, and oir=-—279MPa. The
load vector for finite element analysis was
generated from boundary force data supplied
by the manufacturer of the connecting rod.
Regridding, to account for shape modifica-
tion is carried out as follows:
(i) x,-coordinates of mnodal points on the
varied boundaries at which design para-
meters are assigned are determined by the
new design parameter vector.

(ii) x,-coordinates of other nodal points on
the varied boundaries are obtained by
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linear interpolation between the nodal
points that are determined by the new
design parameter vector.

(iii) Coordinates of nodalpoints inside the do-
main are not changed, to match the ass-
umption that % is varied independently
from the domain variation.

In each design iteration, Eq. 9 is checked
for every element. Those constraints that are

125

not e-active (e=0.02) are discarded, so that
one can save computation time.Hence, the num-
ber of constraints is changed in each design
iteration.

Triangular elements with linear shape func-
tions are used in the finite element analysis,
as show in Fig. 5, with1014 grid points (2025
degrees of freedom) and 1717 elements. With
the initial shape and thickness distribution,

b
25 a7
7 30,
2 2 30y mfn 34 E2
) .\\ >
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decticn a-a
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Sectiva b-b Section c-c
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Fig. 5 Finite element model of engine connecting rod

Section a-a

i)

Section b-b Section c¢-c

TR

Fig. 6 Optimum design
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upper bound constraints on the first principal
stress of the firing loading are active in several
elements in the neck area (near cross section
a-a) in Fig. 5. The cost functional and ||0b!)}
were initally 7.05X10°mm® and 1.97X10%
respectively. After 98 design iterations, they
are reduced to 6.42x10°mm?® and 9.72Xx10%
respectively, with 29 stress constraints active.
Computer time on a PRIME 750 supermini
computer was 4.2cpu minutes per iteration and
a practical, near opimum design shown in
Fig. 6 was obtained in 15 iterations.

7. Conclusions

A variational formulation of the governing
equations, the material derivative idea, and an
adjoint variable technique are combined for des-
ign sensitivity analysis of a functional defined
on a domain whose shape is continuously ch-
anged. In view of theory and results presented,
it is felt that there would be no fundamental
conceptual or computational difficulties in app-
lying the procedure to other optimal design
problems of Z%dimensional elastic structures.

Numerical experimentation with the proce-
dure shows that the choice of numerical methods
for calculation, especially the finite element
method, is crucial in the procedure’s success.
This is mainly due to the fact that one obtains
relatively poor stress results near the boun-

dary, which is extensively used for sensitivity
calculation. Therefore, an extensive research
effort is desirable in this area. Also, application
of mollifier function, defined on the domain of
each element, for stress constrains needs more
study because stress concentration always

occurs on the boundaries of structures.
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