• Title/Summary/Keyword: 평면이방성

Search Result 72, Processing Time 0.023 seconds

Analysis of Elastic Constants of an Anisotropic Rock (이방성 암석의 탄성상수 분석연구)

  • 박철환
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.59-63
    • /
    • 2001
  • The total number of elastic constants of an anisotropic body is 9 and thus it is very difficult to measure these constants experimentally. The number of elastic constants can be reduced if a rock or rock mass is regarded as isotropic or transversely isotropic material. Since only 4 stress-strain relationships can be obtained, it is theoretically impossible to determine all 5 constants from a single uniaxial compression teat. Lekhnitskii overcame this problem by suggesting the fifth equation based on laboratory tests. But his equation is theoretically wrong and does not agree with experimental results. This paper describes the stress-strain relationships and the independent/dependent elastic constants of an anisotropic mass and suggests a testing mothed to determine 5 independent elastic constants for a transversely isotropic rock.

  • PDF

Stress Distribution Under Line Load in Transversely Isotropic Rock Mass (평면이방성 암반에서 선하중에 의한 응력분포 특성)

  • Lee Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.288-295
    • /
    • 2005
  • Many mechanical defects originated from various geological causes make rock mass exhibit anisotropic characteristics. Understanding how the stress distribution occurs in anisotropic rock mass is, therefore, very important for the design of footings on rock and rock structures. In this study, the patterns of elastic stress distribution, developed by acting line load on the surface, in transversely isotropic was investigated. The influence of joint stiffness, joint spacing, and dip angle on the stress distribution was examined. By assuming the Mohr-Coulomb criterion as joint slip condition, the development of joint slip zone was also discussed.

A Model Study on Deformability of A Transversely Isotropic Rock (평면이방성 암석의 변형특성 모델연구)

  • Park, Chul-Whan;Park, Eui-Seob;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.252-262
    • /
    • 2008
  • In the uniaxial compressive test of a single specimen of transversely isotropic rock, its 5 independent elastic constants can not be defined since maximum 4 independent strain measurements are available theoretically. In order to solve this problem, one equation proposed by Saint Venant in 19C and confirmed by Lekhnitskii through the test experiences has been used for long time. Accordign to authors' experiences, however, this equation turned out to give erroneous elastic constants in some cases. Three new equations are suggested and their compatibilities are discussed in this paper. As the results of the analyses of the models, Lekhnitskii's suggested equation is effective for the specimen with the high dip angle whereas it results in the large erred output for that with dip angle less than $25{\sim}30$. It was found that the effectivenesses of three suggested equations and their compatibilities are subject to the dip angle and not to the amounts of elastic constants. Guide map to the selection of the compatible one of those suggested equations is presented as a result of the study.

Experimental Study on the Elastic Constants of A Transversely Isotropic Rock by Multi-Specimen Compression Tests Report 1 - Focus on Data Analysis (다중시험편 시험에 의한 평면이방성 암석의 탄성상수 분석연구 제 1 보 - 자료해석을 중심으로)

  • Park, Chul-Whan;Park, Chan;Synn, Joong-Ho;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.455-464
    • /
    • 2010
  • The variations of the uniaxial compressive strength, the strains and the elastic constants with respect to the angle of anisotropy are analyzed in order to investigate the characteristics of a transversely isotropic rock experimentally. Total 35 specimens of 7 different angles from a large block of rhyolite presenting the flow structure obviously are used in tests. This study is composed of two reports; the elastic constants are mainly analyzed for the every individual angle in the report No. 1 and they will be discussed synthetically in the report No. 2. From the specimens of 0 and 90 degree, 4 independent elastic constants which can directly be obtained without the help of any other suggested equations, may be referred to the true values. Data variation in the strain measurements differs on the angle is analyzed. That of small angle specimens tends higher than that of large angle specimens. The relation of apparent Young’s modulus and angle is found to be M- or U-shaped. For small angle specimens, Saint-Venant approximation cannot be applied successfully on account of showing the non-monotonous increase, and E1 is analyzed out of the true value range. In the specimen of $\phi$ = 75, the deviation of strain measurement and strength are smallest and 4 all constants are analyzed in the true value range. Therefore, specimen of the angle of around 75 may become preferable if only one specimen should be used in test of a transversely isotropic rock.

Determination of Elastic Constants of Transversely Isotropic Rocks from a Single Test Specimen. (단일 시편을 이용한 평면 이방성 암석의 탄성계수 결정)

  • 장보안;나광희;장명환
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.72-78
    • /
    • 2001
  • A method to determine elastic constants for transversely isotropic rock using a single uniaxial compression test was proposed by Kim(1995). However, some problems were found when this method was applied. We derived two different equations in determination of elastic constants using V$\sub$12/ and V$\sub$21/ and performed uniaxial compression tests for two specimens whose angles between transversely isotropic plane and horizontal plane are 30$^{\circ}C$ and 65$^{\circ}C$. The anisotropic elastic constants should be calculated with different equations depend on the angle. If the anisotropic angle is lower than 45$^{\circ}$, V$\sub$21/ may be used. However, if the anisotropic angle is higher than 45$^{\circ}$, V$\sub$12/ may be used.

  • PDF

Application of Suggested Equations to determine the Elastic Constants of A Transversely Isotropic Rock from Single Specimen (평면이방성 암석의 단일시험편에서 탄성상수 결정에 제안된 수식들의 적용연구)

  • Park, Chul-Whan;Park, Chan;Jung, Yong-Bok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.153-168
    • /
    • 2010
  • A fifth equation is required to determine the five independent elastic constants of a transversely isotropic rock from compression test of a single specimen. As an approximation proposed by Saint-Venant has been used for long time, it may cause an erroneous result in some cases, especially for specimen with low angle of anisotropy. Three equations were suggested replacing this traditional equation and proved to be applicable by the model analysis in the previous studies. As Saint-Venant's approximation is turned out the same as the first one of them, it has the characteristics that the apparent Young's modulus is monotonously increasing according to the anisotropic angle. The methodology to analyze the elastic constants from four independent strain measurements by uniaxial compressive test of a single standard specimen is concisely described, and the necessity and compatibility of new suggested equations are discussed. Saint-Venant's approximation can determine the elastic constants close to true values and other equations may be unnecessary in specimens with medium to large angle. Nevertheless, they may become applicable because they can produce the almost same amount. For the specimens of small angle of anisotropy, Saint-Venant's approximation may result in out of general ranges or thermodynamic constraints, but other suggested equations can produce the almost true value. Thus they can be applied before other alternative equation is known. The guide map constructed by model study may decide the most compatible one of the three equations.

Shear band Formation in an Elasto-Plastic Orthotropic Material Under Plane Stress Deformation (평면 응력상태에서 이등방성탄-소성 재료의 전단띠 형성)

  • 임세영
    • The Korean Journal of Rheology
    • /
    • v.7 no.2
    • /
    • pp.128-138
    • /
    • 1995
  • 본 논문에서는 전단띠형성에 있어서 전단변형의 집중화 현상을 이방성 탄소성 재료 에 대해서 해석하였고 소성스핀과 비등방성이 전단띠 형성에 미치는 영향을 연구하였다. 평 면응력 상태에서 소성스핀을 갖고있는 이방성 탄-소성 재료에 대해서 재료 분랑ㄴ정 해서 을 수행하여 변형률 집중화의 시작에 미치는 소성스핀과 비등방성의 효과를 연구하였다. 해 석 결과 이방성 재료에서의 전단띠 형성은 압축 또는 인장의 하중 형태나 이방성 축의 초기 각도 그리고 소성스핀의크기에 따라 그 시작이 촉진되거나 지연되었고 전단띠 생성의 방향 도 달라졌다.

  • PDF

The Effect of Planar Anisotropy in Plane-Stress Bore Expanding (평면 응력 Bore Expanding 에 있어서의 평면이방성 의 영향)

  • 주진원;이중홍;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.435-441
    • /
    • 1984
  • The matrix method, as an effective FEM formulation for the analysis of rigid-plastic deformation, was applied to the bore expanding of anisotropic sheet metal. The effect of planar anisotropy on sheet metal deformation was studied for bore expanding process under the uniform radial stretching condition, and the results were compared with isotropic and normal anisotropic solutions. Experiments were carried out using a flat punch for cold-rolled sheet metal. The experimental results were compared with computations from the matrix method with the boundary conditions corresponding to actual experiment. Both in theory and experiment, it is found that the maximum thinning which results in necking occurs in the direction of the minimum R-value. The results also suggest that the matrix method is efficient for analyzing planar anisotropic sheet metal. The comparison between theory and experiment suggests that Hill's theory of planar anisotropy is somewhat exaggerated. However, the theoretical predictions are in qualitative agreement with the experimental results.

Intermediate Principal Stress Dependency in Strength of Transversely Isotropic Mohr-Coulomb Rock (평면이방성 Mohr-Coulomb 암석 강도의 중간주응력 의존성)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.383-391
    • /
    • 2013
  • A number of true triaxial tests on rock samples have been conducted since the late 1960 and their results strongly suggest that the intermediate principal stress has a considerable effect on rock strength. Based on these experimental evidence, various 3-D rock failure criteria accounting for the effect of the intermediate principal stress have been proposed. Most of the 3-D failure criteria, however, are focused on the phenomenological description of the rock strength from the true triaxial tests, so that the associated strength parameters have little physical meaning. In order to confirm the likelihood that the intermediate principal stress dependency of rock strength is related to the presence of weak planes and their distribution to the preferred orientation, true triaxial tests are simulated with the transversely isotropic rock model. The conventional Mohr-Coulomb criterion is extended to its anisotropic version by incorporating the concept of microstructure tensor. With the anisotropic Mohr-Coulomb criterion, the critical plane approach is applied to calculate the strength of the transversely isotropic rock model and the orientation of the fracture plane. This investigation hints that the spatial distribution of microstructural planes with respect to the principal stress triad is closely related to the intermediate principal stress dependency of rock strength.