이 논문에서는 주가가 확률과정, 즉 확률미분방정식에 의하여 생성되는가를 검정하고 주가의 운동법칙을 규명한다. 일별종합주가지수가 양수의 완전시계열상관을 갖고 있으며, 더욱이 3년 정도의 시차까지 의미있는 시계열상관을 갖고 있음이 발견되었다. 수익률과 가격변화의 시계열상관도 존재하고 시계열은 정상성(定常性)을 갖고 있다. 마팅게일에 의하여 주가가 생성되고있지 않음이 밝혀졌다. 한국증권거래소에서 계산하고 있는 일별 종합주가지수를 포함한 41개 산업별 지수를 사용하여 자본시장의 운동법칙을 규명하기 위하여 가장 많이 이용하고 있는 세개의 확률미분방정식을 검정하였다. 각 주가지수들이 온스타인 울렌벡 브라운 운동과정과 평균회귀과정을 따르지 않고 있다는 것이 발견되었다. 그러나 주가가 편류를 갖는 일반 기하 브라운 운동과정에 의하여 생성되고 있음이 검정을 통하여 확인되었다. 평균회귀과정에 의하여 주가가 생성되지 않는다는 발견은 의외라 할 수 있다. 주가가 온스타인 울렌벡 과정을 따르지 않는다는 것은 주가가 제 1계 정상적 자기회귀과정이 아니라는 것을 의미한다. 일별종합주가지수는 제 4계 자기회귀과정에 의하여 생성된다. 가격변화와 수익률의 생성함수는 제 4계 자기회귀과정이다. 종합주가지수의 제 1계 시계열상관계수는 1이다. 상당히 큰 시차를 갖을 때까지 시계열상관이 대략적으로 1을 유지하고 있다. 따라서 지수가 마팅게일을 따르고 있지 않다. 이 점은 가격변화와 수익률에 있어서도 유사하다. 가격변화, 수익률, 대수수익률의 제 1계 시계열상관이 0.1로 유의적이다. 따라서 수익도 마팅게일 과정을 따르고 있지 않다. 증권가격은 세 번에 걸쳐 구조의 번화가 발생하였다. 구조의 변화가 발생할 때마다 평균가격이 상승하였다. 이와 같은 현상은 장기적 기대가격이 미지일 가능성이 배제되지 않는다. 단기적 기대 주가가 알려진 반면 장기적 기대 주가가 미지라면 평균회귀과정은 장기적 기대주가로 회귀하고 있는 과정이므로 장기기대 주가의 미지성이 평균회귀 과정의 기각을 유도하게 된다. 우리나라의 투자자들은 무위험자산과 위험을 동시에 고려하여 투자활동을 전개하고 있음이 발견되었다. 선형의 효용함수를 갖는 위험중립적 태도의 투자자가 아니다. 위험기피형 효용함수 아래에서 투자활동을 수행하고 있는 합리적 투자자들이라 할 수 있다. 뿐 만 아니라 자신의 평생에 걸친 소비를 소비가 이루어지는 각 기마다 가급적 일정하게 하는 소비행동을 목표로 삼고 소비와 투자에 대한 의사결정을 내리고 있음이 실증분석을 통하여 밝혀졌다. 투자자들은 무위험 자산과 위험성 자산을 동시에 고려하여 포트폴리오를 구성하는 투자활동을 행동에 옮기고 있다.
본 논문은 2요인(two-factor) 사망률 모형에 평균회귀모형(mean reverting process)을 적용하여 2요인의 확률적 변동을 모형화하여 사망률리스크(mortality risk)와 장수리스크(longevity risk)를 분석하였다. 최근 고령사회로 진입한 국가들에서 사망률 개선의 둔화가 관측되고 있는 시점에서 기존의 선형증가 또는 감소의 사망률 개선 모형을 보완함에 그 목적을 두었다. 영국의 1991~2015년 사망률 자료를 이용하여 제시한 모형의 모수를 메트로폴리스 알고리듬을 이용해 추정하였고 추정된 모수 값을 이용하여 다수 시뮬레이션을 통하여 장기간의 미래 사망률 예측값을 계산하였다. 평균회귀 모형의 특성으로 인해 약 60년의 시간이 지난 뒤부터는 사망률 개선이 거의 사라져 사망률이 일정한 값에 근접하였다. 사망률 개선이 둔화되는 현상이 관측되는 특정 집단(국가, 사회)의 경우 2요인 평균회귀 모형은 장기간 사망률 예측방법의 대안으로 간주될 것으로 기대되며, 모형의 응용으로서 평균회귀율의 추정결과로부터 사망률 개선의 속도를 계량화하는 기준을 제시하였다. 끝으로, 2014년~2040 기간의 사망률 예측값을 이용하여 25년 만기 장수채권의 발행가격을 산출하였다.
수문설계시 설계자들의 주된 관심사는 어떤 한 지점의 강우량보다는 유역 평균강우량에 있다. 그러나 우리가 얻을수 있는 강우량은 특정 지점에 설치된 관측소에서 관측되는 지점강우량이므로 이를 이용하여 유역에 대한 면적평균확률강우량을 산정해야 한다. 그러나 면적평균확률강우량을 산정하기 위해서는 복잡한 자료처리과정을 거쳐야 하며 수문분석시 마다 이러한 과정을 반복한다는 것은 매우 번잡스러운 일이다. 따라서 비교적 산정이 손쉬운 지점평균확률강우량을 사용하여 면적평균확률강우량으로 손쉽게 전환할 수 있는 면적감소계수가 대안이 될 수 있다. 현재 우리나라는 건설교통부에서 제시하고 있는 면적감소계수를 사용하고 있으나, 이는 한강유역의 강우관측소를 이용하여 산정하였기 때문에 이를 한강유역과 지형학적, 수문 기상학적 특징이 상이한 지역에 적용하기에는 많은 제약이 따른다고 생각된다. 본 연구에서는 낙동강 유역을 대상으로 자료계열의 빈도해석을 통하여 기존의 지점평균확률강우량과 면적확률강우량을 산출한 후, 이를 이용하여 지점평균확률강우량을 면적확률강우량으로 전환할수 있는 면적감소계수 회귀곡선식을 산정하였다. 따라서 본 연구에서 제시하는 면적감소계수는 낙동강 유역에 대하여 지점평균확률강우량을 면적확률강우량으로 손쉽게 환산할 수 있는 한 가지 방안이 될 것으로 생각된다.
이 논문은 자본시장이 무작위 행보를 운동법칙으로 삼고 있는가, 아니면 정상성의 시계열에 의하여 움직이고 있는가를 심도있게 분석한다. 주가가 무작위 행보를 따른다는 가설을 긍정적 입장에서, 부정적 측면에서, 그리고 이 양자가 공존하고 있다는 관점에서 각 측면에 합당한 방법론을 통한 실증적 분석에 의하여 검정한다. 여러 검증방법을 사용하여 종합주가지수 수익률을 분석하였는 바, 주가 시계열은 무작위 행보가 아니라 정상성의 확률과정(stationary precess) 임이 밝혀졌다. 이와 같은 결과는 우리나라의 증권시장의 성질 중의 하나가 평균회귀라는 것을 입증하는 증거이다. 그리고 평균회귀가 단기적으로 발생하여 그 속도가 매우 빠르다. 주가 시계열에 충격이 가해져 영향을 받을 때 3일 정도가 경과하면 그 충격이 거의 모두 소멸하고 있다. 우리나라 증권시장은 volatility가 높다. 주가는 상당히 높은 자기상관 관계를 갖고 있으며, 이 상관계수가 음수로서 약 -0.50이다. 무척 빠른 속도의 평균회귀와 높은 시계열 상관에 비추어 볼 때 우리나라의 자본시장이 효율적 시장이라는 가설에는 큰 의심이 든다. 뿐만 아니라 이 실증적 결과는 단기적 예측 가능성이 존재할 수 있음을 시사하고 있다. 주가 시계열은 이분산성(異分散性)이 꽤 높다.
본 연구는 CKLS (1992)와 Nowman and Wang (2001)을 참고하여 다양한 형태의 확률과정 모형들을 추정하였다. 실증분석에서는 1996년 1월부터 2005년 1월까지의 월간 브렌트(Brent) 유가를 대상으로 일반적 적률법(GMM)을 적용하였다. 또한, 시뮬레이션된 시계열자료를 활용하여 유럽행 콜옵션의 가치를 산정하고, 확률과정 모형별로 비교하였다. 실증분석 결과에 의하면, 원유가격의 경우 가격 수준에 따라 변동성이 크게 좌우된다는 것을 알 수 있다. 하지만, 기존 관련 연구의 결과들과 달리 유가의 평균회귀 성향은 약한 것으로 나타났다. 이와 함께, 본 연구에서 채택한 상이한 확률과정 모형에 따라 원유를 기초자산으로 하는 파생상품의 가치가 달라진다는 것을 알 수 있다.
주가가 정규분포보다 꼬리가 두꺼운 확률변수인 점, 주가의 변동이 군집화를 이루고 있는 현상, 주가가 장기기억과정에 의하여 생성되고 있다는 점이 실증분석을 통하여 밝혀지고 있다. 주가를 형성시키는 이 세 요소가 하나의 모형내에 통합되지 못하고 있는 실정인데. 이 세 요소가 통합되는 확률과정이 다중프랙탈과정이다. 다중프랙탈과정은 표준브라운 운동과정과 랜덤시간 변형과정의 결합을 통하여 얻게되는 확률과정이다. 이 과정은 Ito형의 확률과정에 포함되지 않는 연속과정인 것이다. 본 논문에서는 주가시계열의 Pareto-Levy 분포성, 분포의 두꺼운 꼬리성질, 시계열상관이 쌍곡선율로 완만하고 무척 더디게 감소하여 장기에 걸쳐서 평균에 회귀하는 장기기억성, 군집화 현상, 거래시간의 통합성을 포괄하는 다중프랙탈과정의 성질을 살펴보고 이 과정이 주가를 생성시키는 과정인지 아닌지를 검정하는데 그 목적을 둔다. 다중프랙탈과정은 표준브라운 운동과 시간변형과정의 통합을 통하여 형성된 확률과정이다. 시간변형과정은 주가의 군집화 현상을 포착하는 과정이다. 표준브라운 운동은 이 운동과 시간 변형과정의 통합화 속에서 분수브라운운동의 성질이 용해되어 장기기억과정을 포착해준다. 다중프랙탈성은 관찰치들의 시간척축이 변함에 따라 발생하는 확률과정의 적률에 가해진 일련의 제약조건이라 할 수 있다. 이 모형은 마팅게일 성질을 만족하는 모형으로 변형시킬 수도 있으며 자기회귀 조건부 이분산 모형을 대체할 수 있는 모형이다. 이 모형에서는 자기상관을 가지고 있지 않은 수익률에도 적용가능하며, 따라서 시장효율성을 점검하는데에도 이용할 수 있다. 이 모형은 축척일치성이라는 성질이 존재하므로 데이터의 총량화가 무리 없이 이루어질 수 있다. 다중프랙탈은 국소축척구성성질을 가지고 있으며, 시간의 흐름에 따라 변할 수 있는 국소축척구성요소를 내포하고 있다. 자본자산의 다중프랙탈 과정을 한국종합주가지수에 적용하였는 바, 이 과정이 한국종합주가 지수의 행동 잘 설명하고 있다. 따라서 한국종합주가지수는 분포의 꼬리의 두꺼움, 자산가격의 군집화현상, 특이한 값, 장기기억을 내포하고 있다.
본 논문은 평균회귀 2요인 사망률 모형에 코호트 효과를 반영한 개선된 확률론적 사망률 모형을 제시한다. 한국 남자의 사망률 자료를 바탕으로 가중평균최소제곱법과 메트로폴리스 알고리듬을 이용하여 사망률 모형을 추정한 결과 코호트 효과를 반영하는 것이 모형 적합도를 향상시킴을 발견하였다. 국민연금공단과 같은 연금사업자가 자신의 장수위험을 금융시장에 순차적으로 전가하는 수단으로서 옵션방식 이자지급 장수채권의 활용을 제안하고 발행채권의 가격 산출방법을 제시하는 것이 본 논문이 기여하는 점이다. 특히 생존지수에 의해 이자지급 현금흐름이 결정되는 장수채권 가격산출을 위하여 코호트 효과가 매우 중요한 요소임을 강조하였다.
충격이 경제에 가해질 때 이 충격이 경제 내에 일시적으로 존속하는 경우도 있고 이 충격이 영구히 존속하는 경우도 있다. 이 양극단 사이의 과정도 존재할 수 있다. 이것을 표상한 것이 stopbreak 과정이다. 충격의 효과가 영구적 효과와 일시적 효과 사이에서 파동하는 시계열을 모형화한 것이 이 과정인 것이다. 이 과정에서는 일정한 기간에는 영구적인 평균이동이 발생하여 구조변화가 발생한다. 다른 기간에 발생하는 충격은 그 효과가 급속히 소멸한다. 밀접한 관계를 맺고 있는 두 주가의 비율은 한 주가의 변동이 제시하는 것을 분석하고 이것을 이용하여 다른 주가를 예측할 수 있는 정보를 제공한다. 한 주가의 변동이 발생하면 이 두 주가의 비율은 변동한다. 그러나 한 주가의 변동의 정보성이 인정되어 이 정보가 다른 주가에 반영되어 조정되면 두 주가의 비율은 변동이전의 수준으로 회귀할 것이다. 변동이 영구적이면 두 주가비율은 동일한 수준을 유지할 것이다. 반면 다른 주가에 영향을 미치지 못하는 정보이면 두 주가의 비율은 변동된 상태에서 지속될 것이다. 일정기간은 영구적 구조변화가 발생하고 그 이외의 기간에는 구조 변화가 발생하지 않고 있는 것이다. 따라서 stopbreak 과정을 사용하여 정확한 예측을 수행할 수 있다. 주가지수들이 stopbreak 과정에 의하여 생성되고 있음이 발견되었다. 즉 주가지수들은 확률적 영구구조변화가 발생하고 있는 시계열들이다. 종합주가지수/제조업지수 역시 확률적 영구구조변화를 가지는 stopbreak 과정에 의하여 생성되고 있음이 밝혀졌다. 이 과정을 실제에 적용하여 주가의 움직임을 파악하면 예측이 가능하다. 특히 연관성이 깊은 두 주식의 주가비율을 사용할 때 효과적이라 할 수 있다.
교통사고예측 및 예방을 위해서는 실제적으로 도로설계과정에서 제어가 가능한 도로 기하구조요소에 대한 사고관계를 파악함이 타당하다. 즉, 도로의 설계자는 도로건설에 앞서 기하구조요소와 사고와의 관계를 현장자료를 통해 정확히 밝혀 도로설계에 반영해야 한다. 이를 위해, 교통사고의 빈도분포를 박히는 것은 가장 기본이 되는 일이며, 교통사고 예측모형개발에 선행되어야 한다. 일반적으로 교통사고건수의 경우 분산이 평균보다 큰 과분산(overdispersion)의 특징을 가지고 있어 음이항 분포를 따른다고 알려져 있다. 따라서 본 논문은 사고모형의 개발에 앞서, 사고발생지점에 대한 도로설계요소와 기타 잠재적인 사고발생 관련요인이 비교적 잘 파악되어있는 호남고속도로를 중심으로 평면 선형상 곡선부에 대하여 교통사고의 분포를 적합도 검정을 통해 알아보고자 하였다. 사고자료는 한국도로송사의 호남고속도로 5년(1996∼2000)간 자료를 분석에 맞게 정리하였으며, 강민욱과 송봉수(2002)에서 제시한 평면선형에 있어서의 구간분할법을 이용하여 배향곡선구간과 단일곡선구간에 대한 사고분석을 하였다. 적합도 분석결과, 예상대로 음이항분포가 사고건수를 설명하기에 가장 적합한 확률분포로 제시되었으며, 이를 통해 최우추정법을 이용한 음이항회귀모형을 개발하였다. 구간분할법을 적용한 음이항회귀모형의 경우, 기존의 확률회귀토형에 비하여 높은 결정계수를 갖았으며, 모형에서 적용된 기하구조요소로는 차량 노출계수, 곡선반경, 단위거리 당 편경사변화값 등이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.