• Title/Summary/Keyword: 퍼지 제어 기법

Search Result 412, Processing Time 0.029 seconds

A Study on Fuzzy Control Algorithm for Prediction of Buffer threshold value in ATM networks (ATM망에서 버퍼의 임계값 예측을 위한 퍼지 제어 알고리즘에 관한 연구)

  • 정동성;이용학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7C
    • /
    • pp.664-669
    • /
    • 2002
  • In this paper, we propose the fuzzy control algorithm for effective buffer control to connected traffic in ATM networks. The proposed Fuzzy control algorithm has two priorities and uses Fuzzy sets to search for dynamic thresholds. In this words, the difuzzification value controls the threshold in the buffer to according to traffic priority (low or high) using fuzzy set theory for traffic connected after reasoning. Performance analysis result: it was confirmed that with the proposed scheme, performance improves at cell loss rate, when compared with the existing PBS scheme.

Adaptive Fuzzy based Sliding Mode Control for an Induction Motor Drive fed by a Matrix Converter (매트릭스 컨버터로 구동되는 유도전동기 구동장치를 위한 적응 퍼지 기법 기반의 슬라이딩 모드 제어기)

  • Park, Ki-Woo;Jou, Sung-Tak;Park, Mun-Soo;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.224-226
    • /
    • 2008
  • 본 논문에서는 매트릭스 컨버터로 구동되는 유도전동기의 속도제어 성능을 향상시키기 위한 적응제어 기법을 제안한다. 유도 전동기는 비선형적 마찰력 등으로 인한 비선형적 특성을 가진다. 이러한 비선형적 특성으로 인해 야기되는 왜곡을 보상하고 속도제어 성능을 개선하기 위해 슬라이딩 모드 제어 기법을 적용한다. 슬라이딩 모드에서 발생하는 채터링 현상과 모델링되지 않은 유도 전동기의 불확실성에 의한 제어 성능 저하를 개선하기 위해, 불확실성 추정을 위한 퍼지 기반 불확실성 추정기를 적용한다. 시뮬레이션을 통해 제안한 제어기법의 타당성을 검증한다.

  • PDF

Fuzzy-based adaptive controller for nonlinear systems (비선형 시스템을 위한 퍼지 기반 적응 제어기)

  • Lee, Yun-Hyung;Yun, Hak-Chin;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.710-715
    • /
    • 2014
  • This paper investigates the design scheme of fuzzy-based adaptive controller to give adaptability for controlling nonlinear systems. For this, a nonlinear system is linearized by the several subsystems depending on the operating point or parameter changes. Then, the sub-controller is designed by linear control scheme for each subsystem and the sub-controllers are fused with each gain of sub-controllers using fuzzy rules. The proposed method is applied to an inverted pole system which has structurally instability and nonlinearity, and simulation works are shown to illustrate the effectiveness by comparison with the interpolation-based adaptive Controller.

Design of T-S Fuzzy-Model-Based Controller for Control of Autonomous Underwater Vehicles (무인 잠수정의 심도 제어를 위한 T-S 퍼지 모델 기반 제어기 설계)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.302-306
    • /
    • 2011
  • This paper presents Takagi-Sugeno (T-S) fuzzy-model-based controller for depth control of autonomous underwater vehicles(AUVs). Through sector nonlinearity methodology, The nonlinear AUV is represented by T-S fuzzy model. By using the Lyapunov function, the design condition of controller is derived to guarantee the performance of depth control in the format of linear matrix inequality (LMI). An example is provided to illustrate the effectiveness of the proposed methodology.

Design of T-S Fuzzy Model Based H Controller for Diving Control of AUV: An LMI Approach (무인 잠수정의 깊이 제어를 위한 T-S 퍼지 모델 기반 H 제어기 설계: 선형 행렬 부등식 접근법)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.441-447
    • /
    • 2012
  • This paper presents a design technique of a Takagi-Sugeno (T-S) fuzzy-model-based $H_{\infty}$ controller for autonomous underwater vehicles (AUVs). The design procedure aims to render the stabilizing controller which satisfies performance of the diving control for AUVs in the presence of the disturbance. A nonlinear AUV is modeled by the T-S fuzzy system through the sector nonlinearity. By using Lyapunov function, the sufficient conditions are derived to guarantee the performance of robust depth control in the format of linear matrix inequality (LMI). To succeed for diving control of AUV, we add the constraints on the diving and pitch angles in the LMI conditions. Through the simulation, we confirm the effectiveness of the proposed methodology.

A Study on the Variable Speed Control of Induction Motor driven by Fuzzy Inference Techniques (퍼지 기법으로 구동되는 유도 전동기의 가변속 운전에 관한 연구)

  • 송호신;이오걸;이준탁;우정인
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 1994
  • In this paper, we implemented the variable speed controller of an induction motor by the Fuzzy control algorithms, which recently is invoking the remarkable interest. As the fuzzy controller is designed on the base of expert's knowlede and experience, it is difficult to expect the perfect control performance of fuzzy controller. Therefore, the adjustment techniques for optimization of scale factors were presented to design the robust fuzzy controller comparing with conventional PI control the usefullness of proposed fuzzy controller was showed by the experimental results.

  • PDF

Load Frequency Control using Parameter Self-Tuning Fuzzy Controller (파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어)

  • 이준탁;정동일;안병철;주석민;정형환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.52-65
    • /
    • 1997
  • This paper presents a design technique of self tuning fuzzy controller for load frequency control of power system. The proposed parameter self tuning algorithm of fuzzy controller is based on the gradient method using four direction vectors which make error between inference values of fuzzy controller and output values of the specially selected optimal controller reduce steepestly. Using input-output data pair obtained from optimal controller, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed gradient method. The related simulation results show that the proposed fuzzy controller is more powerful than the conventional ones for reductions of undershoot and steady-state load frequency deviation and for minimization of settling time.

  • PDF

Fuzzy Sliding Mode Controller for a Robot Manipulator with Passive Joints (수동 관절을 가진 로봇 매니퓰레이터를 위한 퍼지 슬라이딩 모드 기법을 이용한 제어기)

  • Kim, Won;Kim, Min-Seong;Shin, Jin-Ho;Lee, Ju-Jang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • In this paper, we proposed a fuzzy sliding mode controller for a robot manipulator with passive joints. A robot manipulator with passive joints which is not equipped with actuators is a kind of underactuated systerms. The control of underactuated manipulators is more difficult than that of fully-actuated ones. Though the sliding mode control technique has a robust charocteristics to prrarreter uncertainties and external disturbances, the chattering phenomena becorne one of the major problems in application to the real plant. plant.

  • PDF

An Enhanced Max-Min Neural Network using a Fuzzy Control Method (퍼지 제어 기법을 이용한 개선된 Max-Min 신경망)

  • Kim, Kwang-Baek;Woo, Young-Woon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1195-1200
    • /
    • 2013
  • In this paper, we proposed an enhanced Max-Min neural network by auto-tuning of learning rate using fuzzy control method. For the reduction of training time required in the competition stage, the method was proposed that arbitrates dynamically the learning rate by applying the numbers of the accuracy and the inaccuracy to the input of the fuzzy control system. The experiments using real concrete crack images showed that the enhanced Max-Min neural network was effective in the recognition of direction of the extracted cracks.

An Application of Fuzzy Control Models to Inland Drainage Pumping Stations with Different Characteristics for Protection of Inland Flooding (상이한 제원특성을 가진 빗물펌프장에서의 퍼지제어모형 적용)

  • Shim, Jae Hyun;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.107-118
    • /
    • 1993
  • Continuous increasing of impervious area due to urbanization and rainfall quantity due to environmental changes aggravate flooding risk in low land area. Therefore. Seoul municipal authorities go on securing an ample budget for reinforcement and establishment of inner water and inland drainage pumping facilities. But. there is no investment for developing optimal operation rules for appropriate application of existing facilities. In this study. fuzzy control techniques are developed. and applied to 57 stations of inner water and inland drainage pump for model assessment. In these results. fuzzy models have more efficiency in the inland flooding protection than the existing pump operation rule by water level in the same conditions.

  • PDF