• Title/Summary/Keyword: 퍼지 비교

Search Result 858, Processing Time 0.029 seconds

Representation of comparison results between fuzzy numbers with fuzzy sets (퍼지집합을 이용한 퍼지숫자의 비교결과 표현)

  • 퍼지합;이광형
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.30-32
    • /
    • 1998
  • 퍼지숫자는 불명확한 값을 표현하기 때문에, 퍼지숫자의 비교결과 역시 불명확한 성질을 갖고 있다. 본 논문에서는 이러한 퍼지숫자의 비교결과에 존재하는 불명확성을 표현하기 위해서, 퍼지 만족도 함수를 제안한다. 퍼지 만족도 함수는 두 퍼지숫자를 비교하여 그 비교결과로 0과1사이의 퍼지집합을 출력한다. 즉, 어느 숫자가 다른 숫자보다 클(작을) 가능성을 단순히 0과1사이의 값이 아닌, 퍼지집합으로 표현한다. 퍼지 만족도 함수는 이전에 제안된 만족도 함수로부터 확장되었다. 본 논문에서는 만족도 함수를 간략히 소개하고, 이를 이용하여 퍼지 만족도 함수를 제안하며, 이를 퍼지숫자 비교에 적용한 예를 제시한다.

  • PDF

A Ranking Method for Fuzzy Numbers based on Fuzzy Comparisons (퍼지 비교 기반 퍼지 숫자의 등급과 방법)

  • Lee, Jee-Hyong;Lee, Kwang-Hyung
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.12
    • /
    • pp.930-937
    • /
    • 2001
  • For ranking fuzzy numbers, comparisons between numbers are necessary However, the comparison results can be vague since fuzzy numbers represent vague numeric values. Thus, ranking results of fuzzy numbers which are based on comparisons between fuzzy numbers, could also be vague. This means that there could be several possible ranking sequences of fuzzy numbers. There have been proposed many ranking methods for fuzzy numbers. However, most of them generate only ranking sequence. In this paper, we present a ranking method for fuzzy numbers using the fuzzy satisfaction function, Our method generates several possible ranking sequences of the given fuzzy numbers using the fuzzy satisfaction function.

  • PDF

A Study on Fuzzy Comparisons between Fuzzy Numbers Based on the Satisfaction Function (만족도 함수를 이용한 퍼지숫자의 퍼지비교에 관한 연구)

  • 이지형;이광형
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.14-20
    • /
    • 1998
  • This paper proposes a fuzzy comparison method called the fuzzy satisfaction function. It compares two fuzzy numbers and produces a fuzzy set on [O, 11 as the comparison result. It represents the possibility that a fuzzy number is greater(smal1er) than the other with a fuzzy set on [0, I]. It is extended from the satisfaction function which compares two fuzzy numbers and generates a value in [0, 11 as the result. This paper summarizes the satisfaction function and proposes the fuzzy satisfaction function. Some numerical examples are also presented in this paper.

  • PDF

A Ranking Method for Type-2 Fuzzy Values (타입-2 퍼지값의 순위결정)

  • Lee, Seung-Soo;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.341-346
    • /
    • 2002
  • Type-1 fuzzy set is used to show the uncertainty in a given value. But there are many situations where it needs to be extended to type-2 fuzzy set because it can be also difficult to determine the crisp membership function itself. Type-2 fuzzy systems have the advantage that they are more expressive and powerful than type-1 fuzzy systems, but they require many operations defined for type-1 fuzzy sets need to be extended in the domain of type-2 fuzzy sets. In this paper, comparison and ranking methods for type-2 fuzzy sets are proposed. It is based on the satisfaction function that produces the comparison results considering the actual values of the given type-2 fuzzy sets with their possibilities. Some properties of the proposed method are also analyzed.

A Comparative Study on Effectiveness of Boole logic retrieval, Fuzzy retrieval and Probabilistic retrieval (불논리검색, 퍼지검색, 확률검색의 효율 비교연구)

  • 이젬마;사공철
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1994.12a
    • /
    • pp.15-18
    • /
    • 1994
  • 본 연구에서는 불논리검색의 단점을 보완하기 위한 가장 강력한 검색 모형인 퍼지검색과 확률검색의 효율을 불논리검색과 상호비교하였다. 실험데이터로 정보학 분야의 한국어 test collection인 KT Test Set을 이용하였고 색인어와 색인어의 문헌내 출현빈도를 바탕으로 퍼지시소러스를 생성하여 시소러스의 NT, BT로 탐색식을 확장한 다음 각각에 대해 3가지 검색을 행하고 검색효율을 평균재현율과 평균정확률로 측정하였다. 실험결과 검색효율은 재현율에서는 확률검색, 불논리검색, 퍼지검색 순으로. 정확률에서는 퍼지검색, 확률검색, 불논리검색 순으로 나타났다.

  • PDF

Level-2 Fuzzy Graph (레벨-2 퍼지 그래프)

  • 이승수;이광형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.52-55
    • /
    • 2001
  • 퍼지 그래프는 그래프에 대한 정점들과 간선들의 소속정도를 표현할 수 있도록 일반 그래프를 확장한 그래프이다. 그러나 기준 퍼지 그래프는 명확한 정점들의 집합 위에서의 관계만을 표시할 수 있다. 본 논문에서는 퍼지 집합간의 관계를 표시할 수 있도록 확장된 레벨-2 퍼지 그래프를 제안한다. 본 논문에서는 레벨-2 퍼지 그래프를 정의하고 레벨-2 퍼지 그래프에서 수정되어야 하는 연산들과 레벨-2 퍼지 그래프의 특성에 대하여 소개한다. 제안된 레벨-2 퍼지 그래프는 퍼지 데이터 비교 및 퍼지 클러스터링 분야에 적용될 수 있다.

  • PDF

A Ranking Method of Fuzzy Numbers based on Users'Preference and its Application to Decision Making (사용자의 선호도를 반영하는 퍼지숫자의 정렬 방법 및 의사결정에의 응용)

  • Lee, Ji-Hyeong;Lee, Gwang-Hyeong
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.3
    • /
    • pp.441-451
    • /
    • 1999
  • 본 논문에서는 퍼지숫자를 정렬하는 새로운 방법을 제안한다. 제안하는 방법은 사용자의 관심도나 선호도를 반영할 수 있는 방법을 제공하며, 퍼지숫자의 전체적인 가능성분포를 고려하는 평가함수를 방법은 사용자가 제사한 퍼지 집합과 만족도 함수(satisfaction fuction)를 이용하여 정렬 대상이 되는 퍼지숫자를 평가한 후 그 평가값에 따라서 순위를 정하게 된다. 만족도 함수는 두 퍼지숫자의 비교를 위해서 이전에 제안된 방법으로 퍼지숫자의 전체적인 가능성을 고려하는 특징이 있다. 본 논문에서는 제안하는 방법을 퍼지숫자 정렬에 적용한 예와 기존의 방법과 비교한 결과를 보이며, 응용 예로서 의사결정의 문제에 적용한 결과를 제시한다.

Design of pRBFNN Based on Interval Type-2 Fuzzy Set (Interval Type-2 퍼지 집합 기반의 pRBFNN 설계)

  • Kim, In-Jae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1871_1872
    • /
    • 2009
  • 본 논문 에서는 Type-2 퍼지 논리 시스템을 설계하고, 불확실한 정보를 갖는 입력 데이터에 대하여 Type-1 퍼지 논리 시스템과 성능을 비교한다. Type-1 퍼지 논리 시스템은 외부 잡음에 민감한 단점을 가지고 있는 반면, Type-2 퍼지 논리 시스템은 불확실한 정보를 잘 표현 할 수 있다. 따라서 Type-2 퍼지 논리 시스템을 이용하여 이러한 단점을 극복하고자 2가지의 모델을 설계한다. 첫 번째 모델은 규칙의 전 후반부가 Type-1 퍼지 집합으로 구성된 Type-1 퍼지 논리 시스템을 설계 한다. 두 번째는 규칙 전 후반부에 Type-2 퍼지 집합으로 구성된 Type-2 퍼지 논리 시스템을 설계한다. 여기서 규칙 전반부의 입력 공간 분할 및 FOU(Footprint Of Uncertainty)형성에는 FCM(Fuzzy C_Means) clustering 방법을 사용하고, 입자 군집 최적화(Particle Swarm Optimization) 알고리즘을 사용하여 최적의 파라미터를 설계한다. 본 논문 에서는 또한 입력 데이터에 인위적으로 가하는 노이즈에 따른 각각 모델의 성능을 비교한다. 마지막으로 비선형 모델 평가에 주로 사용되는 NOx 데이터를 제안된 모델에 적용하고, 실험을 통하여 노이즈가 첨가되고, 불확실한 정보를 다루기에 Type-1 퍼지 논리 시스템 보다 Type-2 퍼지 논리 시스템이 효율적이라는 것을 보인다.

  • PDF

Design of Nonlinear Model by Means of Interval Type-2 Fuzzy Logic System (Interval Type-2 퍼지 논리 시스템 기반의 비선형 모델 설계)

  • Kim, In-Jae;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.317-320
    • /
    • 2008
  • 본 논문에서는 Type-1 퍼지 논리 시스템과 Type-2 퍼지 논리 시스템을 설계하고, 불확실한 정보를 갖는 입력 데이터에 대하여 각각의 성능을 비교한다. Type-1 퍼지 논리 시스템은 외부잡음에 민감한 단점을 가지고 있는 반면, Type-2 퍼지 논리 시스템은 불확실한 정보를 잘 표현할 수 있으며 효율적으로 취급한다. 따라서 Type-2 퍼지 논리 시스템을 이용하여 이러한 단점을 극복하고자 2가지의 모델을 설계한다. 첫 번째 모델은 규칙의 전 ${\cdot}$ 후반부가 불확실성을 표현 할 수 없는 Type-1 퍼지 집합으로 구성된 Type-1 퍼지 논리 시스템을 설계한다. 두 번째는 규칙 후반부만 Type-2 퍼지 집합으로 구성한 두가지의 Type-2 퍼지 논리 시스템을 설계한다. 여기서 규칙 전반부의 입력 공간 분할에는 Min-Max 방법의 균등분할을 사용하고, 규칙 후반부 멤버쉽 함수의 중심 결정에는 입자 군집 최적화(Particle Swarm Optimization) 알고리즘을 사용하여 동정한다. 또한 입력 데이터에 인위적으로 가하는 노이즈의 정도에 따른 각각 모델의 성능을 비교한다. 마지막으로 비선형 모델 평가에 주로 사용되는 가스로 시계열 데이터를 제안된 모델에 적용하고, 실험을 통하여 불확실한 정보를 다루기에 Type-1 퍼지 논리 시스템 보다 Type-2 퍼지 논리 시스템이 효율적이라는 것을 보인다.

  • PDF

Inference Method for Rule-based Knowledge Representation with Fuzzy values and Certainty Factors (퍼지값과 확신도를 허용하는 규칙기반 지식표현에서의 추론방법)

  • 이건명;조충호;이광형
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.43-59
    • /
    • 1995
  • 본 논문에서는 규칙기반 지식표현에서 퍼지값과 확신도를 사용할 때 발생하는 문제점을 살펴본다. 이들 문제점 해결을 위해서 규칙의 매칭시에 발생하는 퍼지매칭, 퍼지비교, 구간내의 포함에 대한 만족정돌르 평가하는 척도를 제안하다. 또한, 퍼지값과 확신도를 사용하는 규칙기반 지식표현에 대해 적용가능한 추론방법을 소개한다. 한편, 일반규칙과 퍼지생성규칙을 전문가시스템에서 동시에 융통성있게 사용하는 방법을 제시한다. 끝으로 제안된 방법들을 고려하여 설계한 퍼지 전문가시스템 개발도구인 FOPS5에 대하여 소개한다.

  • PDF