• 제목/요약/키워드: 판별성능

검색결과 782건 처리시간 0.029초

앙상블기법을 이용한 다양한 데이터마이닝 성능향상 연구 (A Study for Improving the Performance of Data Mining Using Ensemble Techniques)

  • 정연해;어수행;문호석;조형준
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.561-574
    • /
    • 2010
  • 본 논문은 8가지 방법의 데이터 마이닝 알고리즘(CART, QUEST, CRUISE, 로지스틱 회귀분석, 선형판별분석, 이차판별분석, 신경망분석, 서포트 벡터 머신) 기법과 단일 알고리즘에 2가지 앙상블기법(배깅, 부스팅)을 적용한 16가지 방법을 바탕으로 총 24가지의 방법을 비교하였다. 알고리즘의 성능 비교를 위하여 13개의 이항반응변수로 구성된 데이터를 사용하였다. 비교 기준은 민감도, 특이도 및 오분류율을 사용하여 데이터 마이닝 기법의 성능향상에 대해 평가하였다.

고차 통계를 이용한 잡음 환경에서의 음성신호의 피치 추출과, 유, 무성음 판별 (Pitch Determination and Voiced/Unvoiced Decision of Noisy Speech Based on the Higher-Order Statistics)

  • 신태영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
    • /
    • pp.55-60
    • /
    • 1995
  • 고차 통계 방법을 이용하여 잡음이 섞인 음성 신호에서 피치를 구하는 방법과 이를 이용하여 유성음 및 무성음 구간을 구분하는 방법을 구현하고 그 결과를 기술하였다. 고차 통계의 일종인 3차 cumulant 함수의 경우 Gaussian 또는 대칭적인 분포를 갖는 잡음 신호를 음성신호로부터 효과적으로 분리하여 제거시키는 특징을 가지고 있으며, 이러한 특징을 이용하면 잡음 환경에서 여러 가지 음성 특징 파라메터들을 보다 신뢰도 높게 추정할 수 있다. 본 논문에서는 dam성 신호의 3차 cumulant 함수의 자기상관함수로부터 음성의 피치 주기를 추정하였으며, 피치 위치에서의 normalized peak 크기에 의해 유성음과 무성음을 구분하였다. 또한 성능 비교를 위해 음성 신호 자체의 자기 상관 함수로부터 역시 피치 주기 및 유성음/무성음 구분을 수행하였다. 백색 및 유색 Gaussian 잡음 환경에서의 음성의 피치 주기 추정 실험 결과 SNR가 낮은 경우에 3차 cumulant를 이용한 방법이 2차 통계에 비해 우수한 성능을 나타내었다. 또한 동일한 잡음 환경에서의 유성음/무성음 판별 시험에서도 3차 cumulant를 이용한 방법이 기존의 2차 통계를 이용한 방법에 비해 성능이 크게 향상된 결과를 얻었다.

  • PDF

센서 패턴 잡음을 이용한 디지털 영상 획득 장치 판별 (Digital Imaging Source Identification Using Sensor Pattern Noises)

  • 오태우;현대경;김기범;이해연
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권12호
    • /
    • pp.561-570
    • /
    • 2015
  • IT 기술이 급격히 발전함에 따라서 디지털 멀티미디어 장치 및 소프트웨어를 이용한 콘텐츠가 범람하고 있다. 그러나 불법적 목적을 가지고 있는 사용자가 활용함에 따라 이를 이용한 범죄가 증가되고 있고 멀티미디어 포렌식을 통한 콘텐츠의 보호 및 불법 사용 차단의 필요성이 대두되고 있다. 본 논문에서는 센서 패턴 잡음을 이용하여 디지털 영상 획득 장치 판별을 위한 포렌식 기술에 대하여 제안한다. 먼저 광자 탐지기의 빛에 대한 민감도가 불완전해 생기는 센서 패턴 잡음을 검출하기 위한 기술에 대하여 제시한다. 그다음에 참조 영상들에 대하여 센서 패턴 잡음을 추정하고, 검사 영상에 대하여 센서 패턴 잡음을 추정한 후 두 잡음 사이의 유사성 계산을 통하여 디지털 영상을 획득한 장치에 대하여 판별하는 방법을 설명한다. 제안한 기술의 성능 분석을 위하여 DSLR 카메라, Compact 카메라, 스마트폰, 캠코더 등을 포함한 총 10대 장치에 대하여 개발한 알고리즘에 대한 정량적 성능의 분석을 수행하였고, 그 결과 99.6%의 판별 정확도를 달성하였다.

주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계 (Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis)

  • 김욱동;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.735-740
    • /
    • 2012
  • 본 연구에서는 주성분 분석법 및 선형 판별 분석법을 이용한 다항식 방사형 기저 함수 신경회로망 분류기의 설계 방법론을 소개한다. 주성분 분석법과 선형판별 분석법을 사용하여 주어진 데이터의 정보 손실을 최소화한 특징데이터를 생성하고 이를 다항식 방사형 기저함수 신경회로망의 입력데이터로 사용한다. 방사형 기저 함수 신경회로망의 은닉층은 FCM 클러스터링 알고리즘으로 구성되며 연결가중치는 1차 선형식을 사용하였다. 최적의 분류기 설계를 위해서 최근에 제안된 Artificial Bee Colony(ABC) 최적화 알고리즘을 사용하여 구조 및 파라미터를 동조하였다. ABC 알고리즘을 통해 주성분 분석법과 선형판별 분석법의 고유벡터의 수 및 FCM 클러스터링 알고리즘의 퍼지화 계수등의 파라미터를 동조한다. 제안된 분류기는 대표적인 Machine Learning(ML) 데이터를 사용하여 성능을 평가하며 기존 분류기와 성능을 비교한다.

Comparative Analysis of Anomaly Detection Models using AE and Suggestion of Criteria for Determining Outliers

  • Kang, Gun-Ha;Sohn, Jung-Mo;Sim, Gun-Wu
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권8호
    • /
    • pp.23-30
    • /
    • 2021
  • 본 연구에선 제조 공정에서의 양/불량 판정을 위한 오토인코더(AE) 기반의 이상 탐지 방법들의 비교 분석과 우수한 성능을 보인 이상치 판별 기준을 제시한다. 제조 현장의 특성상 불량 데이터의 수는 적고, 불량의 형태가 다양하다. 이러한 특성은 정상과 비정상 데이터를 모두 활용하는 인공지능 기반 양/불량 판정 모델의 성능을 저하시키고, 성능 향상을 위한 비정상 데이터의 추가 확보에 시간과 비용을 발생시킨다. 이러한 문제를 해결하기 위해서 정상 데이터만을 이용해 이상 탐지를 수행하는 AE, VAE 등 AE 기반의 모델에 관한 연구들이 진행되고 있다. 본 연구에서는 Convolutional AE, VAE, Dilated VAE 모델을 기반으로 잔차 이미지에 대한 통계치와 MSE, 정보 엔트로피를 이상치 판별 기준으로 선정하여 각 모델의 성능을 비교 분석했다. 특히 Convolutional AE 모델에 대해서 범위 값을 적용했을 때, AUC PRC 0.9570, F1 Score 0.8812, AUC ROC 0.9548, 정확도 87.60%의 가장 우수한 성능을 보였다. 이는 기존의 이상치 판별 기준으로 자주 사용되었던 MSE에 비해 정확도 기준 약 20%P(Percentage Point)의 성능 향상을 보이며, 이상치 판별 기준에 따른 모델 성능 향상이 가능함을 확인하였다.

RAM 기반 신경망의 MRD 기법에 관한 연구 (A Study on MRD Methods of A RAM-based Neural Net)

  • 이동형;김성진;박상무;이수동;옥철영
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권9호
    • /
    • pp.11-19
    • /
    • 2009
  • 다중 판별자를 가지는 RAM 기반 신경망은 단일판별자의 신경 망보다 다범주에서 더 우수한 성능 가진다. 다중 판별자를 가지는 경험유관이진신경망과 3차원 뉴로 시스템(3DNS)은 RAM 기반 이진신경망의 단점인 추가 및 반복 학습, 일반화 패턴 추출 등을 개선하였다. 다중 판별자를 사용하는 신경망의 범주 결정 방법은 MRD 기법으로, 각 판별자의 출력합들 중 최대응답 값으로 결정된다. 그러나 학습 패턴량이 증가하면 신경소자와 판별자의 메모리 포화 문제가 발생되며 이는 MRD의 변별력 저하로 전체 성능이 떨어지는 원인이 된다. 이를 해결하기 위해 기존 MRD의 성능을 향상시킬 수 있는 연구가 필요하다고 본다. 본 논문에서는 최적의 MRD 방법을 찾기 위해 사상 매칭, 누적 필터비 인형 응답 차 그리고 제안된 MRD 기법들을 이용한 최적 MRD 기법 등을 제안하였다. 제안된 MRD의 평가는 3DNS에 전처리 과정 없이 MNIST의 NIST에서 제공하는 숫자 자료를 이용하였다. 제안된 기법들은 기존 MRD보다 우수한 인식률과 입력 패턴의 변형 및 노이즈에 대하여 안정적인 결과를 보였다.

사용자 지정 경로를 이용한 비정상 교통 행위 탐지 (Abnormal Traffic Behavior Detection by User-Define Trajectory)

  • 유한주;최진영
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.25-30
    • /
    • 2011
  • 본 논문은 교통 감시를 수행하는 고정 카메라에서, 움직이는 물체들의 궤적을 사용자가 입력한 사용자 지정 경로를 바탕으로 그 정상/비정상성을 판별하는 방법을 제안한다. 제안된 방법은 입력된 경로 정보를 미리 정해진 규칙에 따라 각각의 이동 물체에 대한 비정상성(abnormality)을 계산하고 이를 임계값(Threshold)과 비교하여 비정상 행위를 판별해낸다. 사용자의 경로 정보 입력 기능을 이용하기 때문에 기존의 방법들에서 사용한, 계산량과 시간 소모가 크며 학습 데이터에 의해 그 성능이 크게 영향을 받는 정상 행위 (normal behavior) 모델링 단계를 배제하여 보다 빠르고 정확한 판별 결과를 제공한다. 뿐만 아니라 단순히 지정된 규칙만을 이용하지 않고 주어진 환경에 따라 규칙을 변형 적용하여 보다 강인한 판별 결과를 제공한다. 실험 결과는 본 논문에서 제안한 방법이 각종 교통 상황에서 발생하는 불법 및 비정상 교통 행위를 강인하게 판별해 냄을 보여준다.

소셜 네트워크에서 행위 분석을 통한 사용자 영향력 판별 기법 (User Influence Discrimination Scheme Using Activity Analysis in Social Networks)

  • 박윤정;이서희;한진수;노연우;임종태;김연우;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제16권12호
    • /
    • pp.551-561
    • /
    • 2016
  • 소셜 네트워크에서 발생하는 방대한 데이터를 이용해 사용자 영향력을 판별하기 위한 기법이 요구되고 있다. 본 논문에서는 소셜 네트워크에서 신뢰성을 고려한 사용자 영향력 판별 기법을 제안한다. 제안하는 기법은 사용자의 소셜 행위를 통해 신뢰성 점수를 측정하고 신뢰할 수 있는 사용자들만을 모아 네트워크를 간소화한다. 또한, 사용자간의 연결정도에 따라 직-간접적인 영향력을 반영하여 사용자 영향력을 도출한다. 이를 통해 사용자 영향력 판별함으로써 사용자 영향력의 확산성을 향상시킨다. 제안하는 기법의 우수성을 보이기 위해 제안하는 기법과 기존 기법을 신뢰성과 사용자 영향력 확산성 측면에서 성능평가를 수행한다.