Communications for Statistical Applications and Methods
/
제17권4호
/
pp.561-574
/
2010
본 논문은 8가지 방법의 데이터 마이닝 알고리즘(CART, QUEST, CRUISE, 로지스틱 회귀분석, 선형판별분석, 이차판별분석, 신경망분석, 서포트 벡터 머신) 기법과 단일 알고리즘에 2가지 앙상블기법(배깅, 부스팅)을 적용한 16가지 방법을 바탕으로 총 24가지의 방법을 비교하였다. 알고리즘의 성능 비교를 위하여 13개의 이항반응변수로 구성된 데이터를 사용하였다. 비교 기준은 민감도, 특이도 및 오분류율을 사용하여 데이터 마이닝 기법의 성능향상에 대해 평가하였다.
고차 통계 방법을 이용하여 잡음이 섞인 음성 신호에서 피치를 구하는 방법과 이를 이용하여 유성음 및 무성음 구간을 구분하는 방법을 구현하고 그 결과를 기술하였다. 고차 통계의 일종인 3차 cumulant 함수의 경우 Gaussian 또는 대칭적인 분포를 갖는 잡음 신호를 음성신호로부터 효과적으로 분리하여 제거시키는 특징을 가지고 있으며, 이러한 특징을 이용하면 잡음 환경에서 여러 가지 음성 특징 파라메터들을 보다 신뢰도 높게 추정할 수 있다. 본 논문에서는 dam성 신호의 3차 cumulant 함수의 자기상관함수로부터 음성의 피치 주기를 추정하였으며, 피치 위치에서의 normalized peak 크기에 의해 유성음과 무성음을 구분하였다. 또한 성능 비교를 위해 음성 신호 자체의 자기 상관 함수로부터 역시 피치 주기 및 유성음/무성음 구분을 수행하였다. 백색 및 유색 Gaussian 잡음 환경에서의 음성의 피치 주기 추정 실험 결과 SNR가 낮은 경우에 3차 cumulant를 이용한 방법이 2차 통계에 비해 우수한 성능을 나타내었다. 또한 동일한 잡음 환경에서의 유성음/무성음 판별 시험에서도 3차 cumulant를 이용한 방법이 기존의 2차 통계를 이용한 방법에 비해 성능이 크게 향상된 결과를 얻었다.
IT 기술이 급격히 발전함에 따라서 디지털 멀티미디어 장치 및 소프트웨어를 이용한 콘텐츠가 범람하고 있다. 그러나 불법적 목적을 가지고 있는 사용자가 활용함에 따라 이를 이용한 범죄가 증가되고 있고 멀티미디어 포렌식을 통한 콘텐츠의 보호 및 불법 사용 차단의 필요성이 대두되고 있다. 본 논문에서는 센서 패턴 잡음을 이용하여 디지털 영상 획득 장치 판별을 위한 포렌식 기술에 대하여 제안한다. 먼저 광자 탐지기의 빛에 대한 민감도가 불완전해 생기는 센서 패턴 잡음을 검출하기 위한 기술에 대하여 제시한다. 그다음에 참조 영상들에 대하여 센서 패턴 잡음을 추정하고, 검사 영상에 대하여 센서 패턴 잡음을 추정한 후 두 잡음 사이의 유사성 계산을 통하여 디지털 영상을 획득한 장치에 대하여 판별하는 방법을 설명한다. 제안한 기술의 성능 분석을 위하여 DSLR 카메라, Compact 카메라, 스마트폰, 캠코더 등을 포함한 총 10대 장치에 대하여 개발한 알고리즘에 대한 정량적 성능의 분석을 수행하였고, 그 결과 99.6%의 판별 정확도를 달성하였다.
본 연구에서는 주성분 분석법 및 선형 판별 분석법을 이용한 다항식 방사형 기저 함수 신경회로망 분류기의 설계 방법론을 소개한다. 주성분 분석법과 선형판별 분석법을 사용하여 주어진 데이터의 정보 손실을 최소화한 특징데이터를 생성하고 이를 다항식 방사형 기저함수 신경회로망의 입력데이터로 사용한다. 방사형 기저 함수 신경회로망의 은닉층은 FCM 클러스터링 알고리즘으로 구성되며 연결가중치는 1차 선형식을 사용하였다. 최적의 분류기 설계를 위해서 최근에 제안된 Artificial Bee Colony(ABC) 최적화 알고리즘을 사용하여 구조 및 파라미터를 동조하였다. ABC 알고리즘을 통해 주성분 분석법과 선형판별 분석법의 고유벡터의 수 및 FCM 클러스터링 알고리즘의 퍼지화 계수등의 파라미터를 동조한다. 제안된 분류기는 대표적인 Machine Learning(ML) 데이터를 사용하여 성능을 평가하며 기존 분류기와 성능을 비교한다.
본 연구에선 제조 공정에서의 양/불량 판정을 위한 오토인코더(AE) 기반의 이상 탐지 방법들의 비교 분석과 우수한 성능을 보인 이상치 판별 기준을 제시한다. 제조 현장의 특성상 불량 데이터의 수는 적고, 불량의 형태가 다양하다. 이러한 특성은 정상과 비정상 데이터를 모두 활용하는 인공지능 기반 양/불량 판정 모델의 성능을 저하시키고, 성능 향상을 위한 비정상 데이터의 추가 확보에 시간과 비용을 발생시킨다. 이러한 문제를 해결하기 위해서 정상 데이터만을 이용해 이상 탐지를 수행하는 AE, VAE 등 AE 기반의 모델에 관한 연구들이 진행되고 있다. 본 연구에서는 Convolutional AE, VAE, Dilated VAE 모델을 기반으로 잔차 이미지에 대한 통계치와 MSE, 정보 엔트로피를 이상치 판별 기준으로 선정하여 각 모델의 성능을 비교 분석했다. 특히 Convolutional AE 모델에 대해서 범위 값을 적용했을 때, AUC PRC 0.9570, F1 Score 0.8812, AUC ROC 0.9548, 정확도 87.60%의 가장 우수한 성능을 보였다. 이는 기존의 이상치 판별 기준으로 자주 사용되었던 MSE에 비해 정확도 기준 약 20%P(Percentage Point)의 성능 향상을 보이며, 이상치 판별 기준에 따른 모델 성능 향상이 가능함을 확인하였다.
다중 판별자를 가지는 RAM 기반 신경망은 단일판별자의 신경 망보다 다범주에서 더 우수한 성능 가진다. 다중 판별자를 가지는 경험유관이진신경망과 3차원 뉴로 시스템(3DNS)은 RAM 기반 이진신경망의 단점인 추가 및 반복 학습, 일반화 패턴 추출 등을 개선하였다. 다중 판별자를 사용하는 신경망의 범주 결정 방법은 MRD 기법으로, 각 판별자의 출력합들 중 최대응답 값으로 결정된다. 그러나 학습 패턴량이 증가하면 신경소자와 판별자의 메모리 포화 문제가 발생되며 이는 MRD의 변별력 저하로 전체 성능이 떨어지는 원인이 된다. 이를 해결하기 위해 기존 MRD의 성능을 향상시킬 수 있는 연구가 필요하다고 본다. 본 논문에서는 최적의 MRD 방법을 찾기 위해 사상 매칭, 누적 필터비 인형 응답 차 그리고 제안된 MRD 기법들을 이용한 최적 MRD 기법 등을 제안하였다. 제안된 MRD의 평가는 3DNS에 전처리 과정 없이 MNIST의 NIST에서 제공하는 숫자 자료를 이용하였다. 제안된 기법들은 기존 MRD보다 우수한 인식률과 입력 패턴의 변형 및 노이즈에 대하여 안정적인 결과를 보였다.
본 논문은 교통 감시를 수행하는 고정 카메라에서, 움직이는 물체들의 궤적을 사용자가 입력한 사용자 지정 경로를 바탕으로 그 정상/비정상성을 판별하는 방법을 제안한다. 제안된 방법은 입력된 경로 정보를 미리 정해진 규칙에 따라 각각의 이동 물체에 대한 비정상성(abnormality)을 계산하고 이를 임계값(Threshold)과 비교하여 비정상 행위를 판별해낸다. 사용자의 경로 정보 입력 기능을 이용하기 때문에 기존의 방법들에서 사용한, 계산량과 시간 소모가 크며 학습 데이터에 의해 그 성능이 크게 영향을 받는 정상 행위 (normal behavior) 모델링 단계를 배제하여 보다 빠르고 정확한 판별 결과를 제공한다. 뿐만 아니라 단순히 지정된 규칙만을 이용하지 않고 주어진 환경에 따라 규칙을 변형 적용하여 보다 강인한 판별 결과를 제공한다. 실험 결과는 본 논문에서 제안한 방법이 각종 교통 상황에서 발생하는 불법 및 비정상 교통 행위를 강인하게 판별해 냄을 보여준다.
소셜 네트워크에서 발생하는 방대한 데이터를 이용해 사용자 영향력을 판별하기 위한 기법이 요구되고 있다. 본 논문에서는 소셜 네트워크에서 신뢰성을 고려한 사용자 영향력 판별 기법을 제안한다. 제안하는 기법은 사용자의 소셜 행위를 통해 신뢰성 점수를 측정하고 신뢰할 수 있는 사용자들만을 모아 네트워크를 간소화한다. 또한, 사용자간의 연결정도에 따라 직-간접적인 영향력을 반영하여 사용자 영향력을 도출한다. 이를 통해 사용자 영향력 판별함으로써 사용자 영향력의 확산성을 향상시킨다. 제안하는 기법의 우수성을 보이기 위해 제안하는 기법과 기존 기법을 신뢰성과 사용자 영향력 확산성 측면에서 성능평가를 수행한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.