• Title/Summary/Keyword: 파일기초

Search Result 382, Processing Time 0.035 seconds

천연가스 탱크기초 강관파일의 전기방식

  • 이수홍;최윤식
    • 전기의세계
    • /
    • v.44 no.4
    • /
    • pp.31-41
    • /
    • 1995
  • 본 논문에서는 바다 한가운데를 매립하여 만든 인공섬 위에 부식영향에 취약한 지역에 나관상태로 매설되는 액화 천연가스 탱크기초 강관파일에 전기방식을 적용하는 사례를 통하여 전기방식관련 자료검토와 현장예비조사를 통한 적정한 전기방식설계 적용, 전기방식 전위측정 시험방법, 방식설비 주위시설물에 대한 간섭영향등을 논술하였다.

  • PDF

Development of the Automated Vertical Controllable Pilot-type Equipment for Improving Construction Performance of PHC Piles (PHC 파일 시공성능향상을 위한 연직 자동제어 파일롯타입의 개발)

  • Cho Chang-Yeon;Lee Junbok;Kim Han-Soo;Kim Jeoung-Tae;Cho Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.72-80
    • /
    • 2004
  • The objective of the research is to develop the automated vertical controllable pilot-type equipment for PHC piles. The motivation for the research is that inherent problems related to vertical control during pile driving. The paper explains the current vertical control methods and problems, design and manufacturing of the pilot-type automated equipment and its testing and discussions of the results.

Field Applicability Evaluation of Foundation Combine with Footing and Pile by Model Test (모형실험을 통한 복합기초의 현장 적용성 평가)

  • Kim, Hak-Moon;Jang, Kyung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3729-3744
    • /
    • 2011
  • As the size of structures become larger by civil and architectural structures becoming large, deeply underground, and high-rise, the conditions of underground foundation vary according to the location that the lack of bearing capacity locally because of ununiform of foundation in some parts is frequent. Generally, when the foundation is not homogeneous, the acquisition of safety through applying the most conservative foundation method possible becomes the focus to secure the stability of the superstructures. It is considered as because of inability to verify the application and stability and application of construction of different foundations through an outlined review because of lack of study in case of different foundation of mixed use of direct foundation and pile foundation. Therefore, through measurement interpretation of the different foundation in which the direct foundation and pile foundation are mixed in use, the grounds in which the hypothetical bearing capacity changes dramatically was modeled to evaluate the applicability of different foundations. Also, based on the results of measurement interpretation, various foundations are created by using plaster, Joomunjin standard soil, and rubble to conduct an indoor model test to compare and analyze the movement of pile foundation and different foundations. Based on such research results, the stability and applicability of the different foundations which is more efficient and economical than the existing foundations in case of grounds in which the bearing capacity changes dramatically by comparing and analyzing the different foundations (direct foundation + pile foundation) with the conservative pile foundation and mat foundation. As a result, when the different foundation is applied, the overall settlement amount increased than the conservative pile foundation. However, the difference was very minute and it has been confirmed to be no issue as a result of assessment of stability of the differential settlement of structures through critical angle displacement.

Probabilistic Assessment of Dynamic Properties of Offshore Wind Turbines Considering Soil-Pile Interaction (지반과 말뚝의 상호작용을 고려한 고정식 해상풍력터빈의 동적 특성에 대한 확률적 평가)

  • Yi, Jin-Hak;Kim, Sun-Bin;Han, Taek Hee;Yoon, Gil-Lim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.343-350
    • /
    • 2015
  • Extensive discussion on the optimal types of offshore wind turbine(OWT) among monopile, tripod and jacket in the intermediate depth of water has been actively carried out in worldwide wind turbine industry. Selecting the optimal types of OWT among several substructural types, it is required to consider the economic and technical feasibility including dynamically stable design of a wind turbine system. In this study, the effects of loading levels and uncertainties of soil properties on the natural frequency of OWT have been quantitatively investigated. In conclusion, the natural frequency of monopile-type OWTs has a significant level of uncertainty, hence it is very important to minimize the level of uncertainties in soil properties when the monopile is selected as a foundation for an OWT.

Design Load Analysis for Offshore Monopile with Various Estimation Methods of Ground Stiffness (지반강성 산정방법에 따른 해상 모노파일의 설계하중 해석)

  • Jang, Youngeun;Cho, Samdeok;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.47-58
    • /
    • 2014
  • This study explores methods for modeling the foundation-seabed interaction needed for the load analysis of an offshore wind energy system. It comprises the comparison study of foundation design load analyses for NREL 5 MW turbine according to various soil-foundation interaction models by conducting the load analysis with GH-Bladed, analysis software for offshore wind energy systems. Furthermore, the results of the aforementioned load analysis were applied to foundation analysis software called L-Pile to conduct a safety review of the foundation cross-section design. Differences in the cross-section of a monopile foundation were observed based on the results of the fixed model, winkler spring and coupled spring models, and the analysis of design load cases, including DLC 1.3, DLC 6.1a, and DLC 6.2a. Consequently, under all design load conditions, the diameter and thickness of the monopile foundation cross-section were found to be 7 m and 80 mm, respectively, using the fixed and coupled spring models; the results of the analysis conducted using the winkler spring model showed that the diameter and thickness of the monopile foundation cross-section were 5 m and 60 mm, respectively. The study found that the soil-foundation interaction modeling method had a significant impact on the load analysis results, which determined the cross-section of a foundation. Based on this study, it is anticipated that designing an offshore wind energy system foundation taking the above impact into account would reduce the possibility of a conservative or unconservative design of the foundation.

Numerical Analysis of Effect of Waveform Micropile on Foundation Underpinning During Building Vertical Extension Remodeling (수치해석을 통한 수직증축 리모델링시 파형 마이크로파일의 보강효과 분석)

  • Wang, Cheng-Can;Jang, Youngeun;Kim, Seok-Jung;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.335-344
    • /
    • 2019
  • Micropiles are widely used for foundation underpinning to enhance bearing capacity and reduce settlement of existing foundation. In this study, the main objective is to evaluate underpinning performance of a newly developed micropile called waveform micropile for foundation underpinning during vertical extension. Finite element method (FEM) was used to evaluate the underpinning performance of waveform micropile in terms of load-settlement response of underpinned foundation and load sharing behavior. For comparison, underpinning effects of three conventional micropiles with different lengths were also discussed in this study. Numerical results of load-settlement response for single pile demonstrated that bearing capacity and axial stiffness of waveform micropiles were higher than those of conventional micropiles because of the effect of shear keys of waveform micropiles. When additional loads 20 %, which is according to design loads of the vertical extension, were applied to the underpinned foundation, load sharing capacity of waveform micropile was 40 % higher than conventional micropile at the same size. The waveform micropile also showed better underpinning performance than the conventional micropile of length 1~1.5 times of waveform micropile.

The Influence of Ground Vibration Caused by Pile Driving on Power Line Tower Foundation (항타 진동이 송전탑 기초에 미치는 영향 연구)

  • Park, Jung-Bong
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.42-47
    • /
    • 2009
  • Ground vibrations caused by pile driving or explosive blasting can affect the stability of power line tower and its foundation. Because the characteristics of ground vibrations generally depend on the distances from the blast, the ground vibrations should be controlled by taking the distance into account. In this study, ground vibration levels were measured at the foundation of a power line tower and on ground surface adjacent to the tower. The relationships between the dominant frequencies of the ground vibrations that were measured at both locations were comparatively investigated.

FLOW-3D Analysis on Scouring around Offshore Wind Foundation (FLOW-3D를 이용한 해상풍력발전기초의 세굴 평가)

  • Oh, Myoung-Hak;Kwon, O-Soon;Jeong, Weon-Mu;Lee, Kwang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1346-1351
    • /
    • 2012
  • In order to evaluate the local scour around offsshore wind foundation, mono pile and jacket foundation were simulated by using FLOW-3D. Numerical analysis results show that local increases of velocity around mono pile and jacket foundation was developed but velocity decreases in backward of pile and leg due to the wake vortex was observed. Local increases of velocity around foundation and scouring of jacket is more significant than that of mono pile, since jacket is the complex structure and has the interference effect with legs. Therefore, in order to evaluate the scour and design the scour protection method, the form and shape of substructures of offshore wind should be considered.

Behavior Analysis by Verticality Error of Monopile Foundation for 5MW Offshore Wind Turbine (5MW급 해상풍력발전기 모노파일 기초의 수직도 오차에 따른 거동 분석)

  • Jang, Hwa Sup;Kim, Ho Sun;Eum, Hark Jin;Kim, Mann Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.61-68
    • /
    • 2012
  • In general, verticality error necessarily occurs in marine pile foundation due to construction error or marine environmental effects. In marine structure, design by vertical load rather than horizontal load is dominant, but in the offshore wind turbine foundation, horizontal load is dominant. As the structure type that has dynamic movement by blade rotation, verticality error may have structurally significant effects. In this study, structural response feature of foundation and ground were analyzed according to verticality error of monopile foundation of 5MW offshore wind turbine. Marine environmental load was calculated per ISO standard and the margin of verticality error was calculated to be $L/{\infty}$(=0), L/300, L/200 and L/100. As a result of analysis, it was found that the maximum value of member force of the foundation with L/100 error increased about 7.2% compared to the monopile without verticality error.

Evaluation of the Effect of Waveform Micropiles on Reinforcement of Foundation Structures Through Field Load Tests (현장 재하시험을 통한 파형 마이크로파일의 기초보강 효과 분석)

  • Baek, Sung-Ha;Han, Jin-Tae;Kim, Seok-Jung;Kim, Joonyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.3
    • /
    • pp.29-40
    • /
    • 2023
  • In this study, we investigated the reinforcing effects of waveform micropiles in a stratigraphic setting comprising buried soil, weathered soil, and weathered rock. We conducted a series of field load tests and determined that waveform micropiles exhibited sufficient bearing capacity through frictional resistance in the soil layer and demonstrated favorable constructability in conditions with deep bedrock layers. Moreover, the vertical stiffness of waveform micropiles was approximately 2.2 times higher than that of conventional micropiles when subjected to the same design load. Pile group load tests comprising conventional and waveform micropiles showed that micropiles with higher stiffness carried a greater proportion of the load. Although there was no significant difference in the bearing capacity between conventional and waveform micropiles under the same design load, waveform micropiles with higher stiffness showed a load-carrying capacity 1.7 to 3.2 times greater than that of conventional micropiles. These findings suggest that waveform micropiles can be effectively used for foundation reinforcement and reduce the risk of foundation failure when increased loads due to modifications such as expansion remodeling are expected.