• Title/Summary/Keyword: 파괴진행영역

Search Result 73, Processing Time 0.026 seconds

Progressive Fracture Analyses of Concrete by Finite Element Methods (유한요소법에 의한 콘크리트의 진행성 파괴해석)

  • 송하원
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.1
    • /
    • pp.145-153
    • /
    • 1996
  • The fracture process zone in concrete is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important roles. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominani: mechanism governing the fracture process of concrete. Fracture mechanics does work for concrete provided that the fracture process zone is being considered, so that the development of model for the fracture process zone is most important to describe fracture phenomena in concrete. In this paper the bridging zone, which is a part of extended rnacrocrack with stresses transmitted by aggregates in concrete, is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the analysis of progressive cracking in concrete based on the discrete crack approach: one with crack element, the other without crack element. The advantage of the technique with crack element is that it dees not need to update the mesh topology to follow the progressive cracking. Numerical results by the techniques are demonstrated.

Fracture Analysis of Concrete Structures using Boundary Element Method (경계요소법에 의한 콘크리트 구조물의 진행성 파괴해석)

  • 송하원;전재홍
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.127-134
    • /
    • 1996
  • This paper is about a progressive fracture analysis of concrete by boundary element method. From both displacement boundary integral equation and traction boundary integral equation of solids with cracks, a boundary integral equation for crack problem is derived. For the analysis of progressive fracture of concrete, fracture process zone is modelled based on Dugdale-Barenblatt model with linear tension-softening curve. By using the boundary element modeling, the progressive fractures of concrete beam and compact-tension specimens with various loading conditions are analyzed and compared with experiments. The analysis results show that the technique in this paper can predict the maximum strength and the nonlinear behavior of concrete including post-peak behavior.

  • PDF

Non-Linear Fracture Analysis of Concrete Composite (콘크리트 복합체의비선형 파괴해석)

  • 김상철
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.187-196
    • /
    • 1997
  • 시멘트를 기초로하는 복합재료의 파괴거동은 주균열이 진행하기 이전에 파괴진행영역이라고 하는 미세균열대가 콘크리트 내부에 형성고기 때문에 선형파괴역하게 입각하여 해석하게 되면 실험치와 상당한 차이를 나타낸다. 이러한 문제점을 해결하기 위해 가상균열모델이나 균열띠 모델, 두 파라메터 파괴모델 등 비선형해석에 따른 여러 파괴역학모델들이 제안되었으나 이들 모델들은 2차원 해석에 근거를 두고 있기 때문에 구조체의 두께 방향으로 동일한 균열이 형성되며, 특히 콘크리트 실험에서 관찰되는 비연속적 균열발생에 대해서 설며이 어려웠다. 이에 본 연구는 콘크리트를하나의 다종복합체로 가정하고 연립변형모드 및 진행파괴모드 방향으로 구성재료를 배열한 상태에서 가상균열 이론에 근거한 비선형해석방법으로 모델링하였다. 진행파괴모드로 구성재료를 배열하면 강성이 높은 구성재료를 통과하여 균열이 진행될 때 균열선단으로부터 분포된 응력이 상층의 허용인장강도를 초과하게 되어 균열이 발생되며 이러한 균열은점진적인 균열진행과는 달리 비연속 동시 발생 균열ㄹ로 나타났다. 본 연구는 진행파괴모드에서의 파괴 해석 방법과연립변형모드에서의 해석 방법을 제시하였으며, 해석결과를 실험결과와 비교함으로써 검증하였다.

Progressive Fracture Analysis of Concrete by Boundary Element Method and its Stabilizing Technique (경계요소법에 의한 콘크리트의 파괴진행해석 및 안정화 기법)

  • 송하원;전재홍
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.205-212
    • /
    • 1996
  • This paper presents progressive fracture analysis of concrete using boundary element method and its stabilizing technique. To determine ultimate strength and to predict nonlinear behavior of concrete during progressive crack growth, the modelling of fracture process zone is done based on Dugdale-Barenblatt model with linear tension-softening curve. We regulate displacement and traction boundary integral equation of solids including crack boundary and analyze progressive fracture of concrete beam and compact tension specimen. Also a numerical technique which considers the growth of stress-free crack of concrete during the analysis and removes snapback of postpeak behavior is proposed.

탄성-소성파괴 매개변수와 크리이프파괴 매개변수에 관하여

  • 이강용
    • Journal of the KSME
    • /
    • v.27 no.2
    • /
    • pp.132-136
    • /
    • 1987
  • 최근 저자는 혼합모우드에 대한 Budiansky와 Rice의 $J_k$ 적분에 모순이 있음을 지적한 바 있다. 그러나, Kishimoto등은 파괴진행영역을 고려한 경로 독립적분J/^/을 제시하여 주목을 끌고 있다. Landes등은 Rice의 J적분을 정상상태 크리이프에까지 연장 적용하기 위한 $C^*$적분을 소개하였다. 그후 크리이프파괴에 대한 매개변수로서 Liu등에 의한 $C_{gk}{\;}^*$, Brust등에 의한 $T_k{\}^*$등이 소개되어 계속 연구중이다. 여기에서는 이러한 매개변수들에 대해 개괄적으로 서술하고자 한다.

  • PDF

Numerical modeling of brittle failure of the overstressed rock mass around deep tunnel (심부 터널 주변 과응력 암반의 취성파괴 수치모델링)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.469-485
    • /
    • 2016
  • The failure of rock mass around deep tunnel, different from shallow tunnel largely affected by discontinuities, is dominated by magnitudes and directions of stresses, and the failures dominated by stresses can be divided into ductile and brittle features according to the conditions of stresses and the characteristics of rock mass. It is important to know the range and the depth of the V-shaped notch type failure resulted from the brittle failure, such as spalling, slabbing and rock burst, because they are the main factors for the design of excavation and support of deep tunnels. The main features of brittle failure are that it consists of cohesion loss and friction mobilization according to the stress condition, and is progressive. In this paper, a three-dimensional numerical model has been developed in order to simulate the brittle behavior of rock mass around deep tunnel by introducing the bi-linear failure envelope cut off, elastic-elastoplastic coupling and gradual spread of elastoplastic regions. By performing a series of numerical analyses, it is shown that the depths of failure estimated by this model coincide with an empirical relation from a case study.

A Study on the Stress Induced Brittle Failure around Openings with Cross-sectional Shape by Scaled Model Test and DEM Simulation (모형시험과 개별요소법을 이용한 단면 형상에 따른 공동 주변 취성파괴에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.389-410
    • /
    • 2007
  • For moderately jointed to massive rock masses, the failure and deformation behaviors around an excavated opening are absolutely influenced by the initial rock stress and strength of in-situ rock mass. The localized and progressive brittle failure around an opening does not mean whole collapse of an excavated opening. But, for many cases, it may induce temporary stopping of excavation works and reexamination of the current supporting system, which can result in delay of the entire construction works and additional construction cost. In this paper, the characteristics of the brittle failure around an opening with stress level and tunnel shape was studied by the biaxial compressive test using scaled specimen and by the numerical simulation with $PFC^{2D}$. The biaxial test results were well coincided with the stress induced failure patterns around the excavated openings observed and monitored in the in-situ condition. For the circular part of the opening wall, the stress induced cracks initially occurred at the wall surface in the direction of the minimum principal stress and contributed to the localized notch shaped failure region having a certain range of angle. But for the corner and straight part of the opening wall, the cracks initiated at sharp corners were connected and coalesced each other and with existing micro cracks. Further they resulted in a big notch shaped failure region connecting two sharp corners.

Characteristics of the Progressive Brittle Failure around Circular Opening by Scaled Model Test and Discrete Element Analysis (축소 모형시험과 개별 요소 해석에 의한 원형 공동 주변의 점진적 취성파괴 특성에 관한 연구)

  • Jeon Seok-Won;Park Eui-Seob;Bae Seong-Ho
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.250-263
    • /
    • 2005
  • Progressive and localized brittle failures around an excavated opening by the overstressed condition can act as a serious obstacle to ensure the stability and the economical efficiency of construction work. In this paper, the characteristics of the brittle failure around an circular opening with stress level was studied by the biaxial compressive test using sealed specimen and by the numerical simulation with $PFC^{2D}$, one of the discrete element codes. The occurring pattern and shape of the brittle failure around a circular opening monitored during the biaxial loading were well coincided with those of the stress induced failures around the excavated openings observed in the brittle rock masses. The crack development stages with stress level were evaluated by the detailed analysis on the acoustic emission event properties. The microcrack development process around a circular opening was successfully visualized by the particle flow analysis. It indicated that the scaled test had a good feasibility in understanding the mechanism of the brittle failure around an opening with a high reliability.

Interpretation of Corrosion Mechanism on Anode side Separator for MCFC (용융탄산염 연료전지에서 양극측 분리판의 부식기구 해석)

  • Park, Hyeong-Ho;Lee, Min-Ho;Lee, Kyu-Taek
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.571-576
    • /
    • 1998
  • This study was carried out for investigating the corrosion behaviors, corrosion mechanisms, and behaviors of elements on a separator for a molten carbonate fuel cell under both the electrolyte and anode side environment. A 310S austenitic stainless steel was used as the separator material. Corrosion proceeded via three steps; the formation step of corrosion product in which rapid corrosion takes place until stable corrosion product is formed after the beginning of corrosion, the protection step against corrosion until breakaway occurs after the formation step of stable corrosion product and the advancing step of corrosion after the breakaway. From the standpoint of the behavior of the elements in the specimen, Fe and Cr, Ni were enriched in the region of corrosion product, in the region of corrosion protection, and at the Cr-deplete zone, respectively. With respect to corrosion mechanism, ionization of electrolyte at the anode side was the main corrosion mechanism, and the final corrosion products were $LiFeO_2$ and $LiCrO_2$ at the anode side.

  • PDF

A Study on the Fracture Characteristics of Pre-Cracked Fiber Reinforced Concrete (초기균열이 있는 강섬유보강 콘트리트의 파괴특성)

  • 곽기주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.3
    • /
    • pp.53-63
    • /
    • 1992
  • To investgate the fracture behavior of the steel fiber reinforced concreate, the specimens with different steel fiber contents of 0.0%, 0.5%, 1.0%, 1.5%, were made and notched with differents notch depth ratios of 0.0,0.2, 0.4, 0.6, and the three point bend tests were followed. Test results of 16 different types of above combined specimens were summarized as follows. 1.The load line deflection contents were found to increase 5%, 16%, 19%, respectively, compared to the unnotched specimen with the increased of initial notch depth ratio to 0.2,0.4, 0.6, respectively. 2.The frexural strength were found to decrease 14%, 16%, 21 %, respectively, compared to the unnotched specimen with the increase of initial notch depth ratio to 0.2, 0.4, 0.6,respectively. 3.The stress intensity factors of the steel fiber reinforced concrete were found to increase 1.1 1.5 1.9 times, respectively, compared to the concrete with no steel fiber content with the increase of fiber content to 0.5%, 1.0%, 1.5%, respectively. 4.The influence of the mass of the steel fiber reinforced concrete to the whole fracture energy was found to be minor with 6~8 % contribution. 5.The fracture energy of the steel fiber reinforced concrete, considering the load-deflection curve and concrete mass was found to be approximately 350-380kg m/m$^2$. 6.The regression analysis through the relationship between the compressive(Oc)/tensile (OT) strength and fracture energy(Gf) showed that the fracture energy of the steel fiber reinforced concrete could be predicted as follows. Gf= 19.2662 Oc - 3940.4 Gf= 246.876 OT- 6008.8

  • PDF