• Title/Summary/Keyword: 트림곡면

Search Result 9, Processing Time 0.027 seconds

Spline FEM for Trimmed NURBS Surfaces (트림영역이 있는 NURBS 평면의 스플라인 유한요소해석)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.63-66
    • /
    • 2009
  • 본 논문에서는 트림영역이 있는 NURBS 평면을 등기하 해석할 수 있는 방법을 제시한다. 기존 등기하 해석법으로 트림 NURBS 곡면을 해석하기 위해서는 해석 도메인이 여러 개의 사각형 패치로 분할되어있어야 한다. 그러나 본 연구에서 제안한 방법은 CAD에서 제공하는 트림곡선의 정보를 해석에 직접 사용할 수 있기 때문에 CAD 모델을 별도로 재구성해야하는 번거로움이 없다. NURBS 곡선 투영법을 이용하여 트림되는 요소를 찾고, 트림된 요소는 쿼드트리 분할법과 NEFEM에서 사용된 적분방법을 동시에 고려하면 어떤 경우의 트림 요소라도 적분이 가능하다. 다양한 수치 예제를 통하여 제안한 해석 방법을 검증하고, 기존의 등기하해석법으로 해석하기 어려운 다수의 트림영역이 존재하는 NURBS 평면을 해석하여 본 방법의 유용성을 검토한다.

  • PDF

Automatic Mesh Generation in the General Three-Dimensional Trimmed Surface using Qua (쿼드트리를 이용한 일반적인 3차원 트림곡면에서의 유한요소 자동생성)

  • 유동진;윤정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.136-148
    • /
    • 2000
  • In this work, a general method for the mathematical description of three-dimensional trimmed surface is proposed by introducing the base parametric surface and boundary curves. Since mesh density distribution for the analysis may vary by cases, a grid-based mesh generation algorithm using quadtree is proposed in the present work. For the assurance of connectivity of generated meshes among surfaces, a method for the pre-cleaning of boundary curves has been developed to be used in the automatic generation of the finite elements. In addition, mesh-smoothing algorithm is suggested which can be used in the general trimmed surface. In this algorithm nodes are moved on the original surface by the normal projection in each iterative smoothing procedure.

  • PDF

Trimmed surface analysis based on T-spline FEM (T-스플라인 유한요소해석을 이용한 트림 곡면 해석)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.612-617
    • /
    • 2008
  • In this present work, trimmed surface analysis for the 2D elasticity problem is presented. The main benefit of the proposed method is that no additional modeling for analysis of a trimmed surface is necessary. As the first attempt to deal with a trimmed surface in spline FEM, the information of the trimming curve and trimmed surface exported from CAD system is directly utilized for analysis. For this, trimmed elements are searched through employing projection scheme. For the integration of the trimmed elements, NURBSenhanced integration scheme which is used in NEFEM is adopted. The quadtree refinement of integration cell is performed for the complicated trimmed cases. The information of trimming curve is used for obtaining integration points as well as constructing stiffness matrix. The robustness and effectiveness of the proposed method are investigated by presenting various numerical examples.

  • PDF

A Study on Filling Holes of the Polygon Model using Implicit Surface Scheme (음함수 곡면기법을 이용한 폴리곤 모델의 홀메움에 관한 연구)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.107-114
    • /
    • 2005
  • A new approach which combines implicit surface scheme and point projection method is presented in order to fill the arbitrarily shaped holes in the polygon model. In the method a trimmed surface which has an outer boundary curve is generated by using the implicit surface scheme and normal projection of point onto the base surface. The base surface is constructed by creating smooth implicit surface from the incomplete polygon model through which the surface should pass. In this paper an implicit surface is defined by a radial basis function, a continuous scalar-valued function over the domain $R^3$. The base surface is the set of all points at which this scalar function takes on the value zero and is created by placing zero-valued constraints at the vertices of the polygon model. In order to show the validity of the present study, various hole fillings are carried out for the complex polygon model of arbitrary topology.

Integration of Shell FEA with Geometric Modeling Based on NURBS Surface Representation (NURBS 곡면기반의 기하학적 모델링과 셀 유한요소해석의 연동)

  • Choi, Jin-Bok;Roh, Hee-Yuel;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.105-112
    • /
    • 2007
  • The linkage framework of geometric modeling based on NURBS(Non-Uniform Rational B-Spline) surface and shell finite analysis is developed in the present study. For this purpose, geometrically exact shell finite element is implemented. NURBS technology is employed to obtain the exact geometric quantities for the analysis. Especially, because NURBS is the most powerful and wide-spread method to represent general surfaces in the field of computer graphics and CAD(Computer Aided Design) industry, the direct computation of surface geometric quantities from the NURBS surface equation without approximation shows great potential for the integration between geometrically exact shell finite element and geometric modeling in the CAD systems. Some numerical examples are given to verify the performance and accuracy of the developed linkage framework. In additions, trimmed surfaces with some cutouts are considered for more practical applications.

T-spline FEA for Trimmed NURBS Surface (트림 NURBS 곡면의 T-스플라인 유한요소해석)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.135-144
    • /
    • 2009
  • In this present work, spline FEA for the trimmed NURBS surface of the 2D linear elasticity problem is presented. The main benefit of the proposed method is that no additional efforts for modeling of trimmed NURBS surfaces are needed and the information of the trimming curves and trimmed surfaces exported from the CAD system can be directly used for analysis. For this, trimmed elements are searched by using NURBS projection scheme. The integration of the trimmed elements is performed by using the NURBS-enhanced integration scheme. The formulation of constructing stiffness matrix of trimmed elements is presented. In this formulation, the information of the trimming curve is used for calculating the Jacobian as well as for obtaining integration points. The robustness and effectiveness of the proposed method are investigated through various numerical examples.

Automatic Generation of Quadrilateral Meshes on Trimmed Surfaces (트림 곡면상에서 사각형 요소망의 자동 생성)

  • 김형일;채수원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.153-161
    • /
    • 1999
  • An atomatic mesh generation scheme with unstructured quadrilateral elements on trimmed surfaces has been developed. Trimmed surfaces are often encountered in modeling of structures with complex shapes such as aircrafts, automobile structures, pressure vessels and etc. For unstructured mesh generation with quadrilateral elements, a domain decomposition algorithm employing loop operators has been used. Mesh generation on trimmed surface is performed in three steps. First, trimmed surfaces with holes or cuts are transformed to th largest projection planes in which the meshes are constructed. The constructed meshes are transformed to the u-v parametric plane and then finally to the original 3D surfaces. Th exact locations of holes or cuts in projection planes are determined by the Newton-Raphson method. Sample meshes are constructed to demonstrate the effectiveness of the proposed algorithm.

  • PDF

Development of A Software Tool for Automatic Trim Steel Design of Press Die Using CATIA API (CATIA API를 활용한 프레스금형 트림스틸 설계 자동화 S/W 모듈 개발)

  • Kim, Gang-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.72-77
    • /
    • 2017
  • This paper focuses on the development of a supporting S/W tool for the automated design of an automotive press trim die. To define the die design process based on automation, we analyze the press die design process of the current industry and group repetitive works in the 3D modeling process. The proposed system consists of two modules, namely the template models of the trim steel parts and UI function for their auto-positioning. Four kinds of template models are developed to adapt to various situations and the rules of the interaction formula which are used for checking and correcting the directions of the datum point, datum curve, datum plane are implemented to eliminate errors. The system was developed using CATIA Knowledgeware, CAA(CATIA SDK) and Visual C++, in order for it to function as a plug-in module of CATIA V5, which is one of the major 3D CAD systems in the manufacturing industry. The developed system was tested by applying it to various panels of current automobiles and the results showed that it reduces the time-cost by 74% compared to the traditional method.

An Efficient Triangulation Algorithm for Trimmed NURBS Surfaces (트림된 NURBS 곡면의 효율적인 삼각화 알고리즘)

  • 정재호;박준영
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.144-154
    • /
    • 2000
  • We propose an algorithm for obtaining a triangular approximation of a trimmed NLRBS surface. Triangular approximation is used in the pre-processing step of many applications such as RP(Rapid Prototyping), NC(Numerical Control) and FEA(Finite Element Analysis), etc. The algorithm minimizes the number of triangular elements within tolerance and generates a valid triangular mesh for STL file and NC tool path generation. In the algorithm, a subdivision method is used. Since a patch is a basic element of triangular mesh creation, boundary curves of a patch are divided into line segments and the division of curves is applied for the interior of the surface. That is, boundary curves are subdivided into line segments and two end points of each line segment are propagated to the interior of the surface. For the case of a trimmed surface, triangulation is carried out using a model space information. The algorithm is superior because the number of elements can be controlled as the curvature of the surface varies and it generates the triangular mesh in a trimmed region efficiently. To verify the efficiency, the algorithm was implemented and tested for several 3D objects bounded by NURBS surfaces.

  • PDF