• 제목/요약/키워드: 트리 마이닝

검색결과 129건 처리시간 0.059초

빅데이터를 활용한 젠트리피케이션 상권의 장소성 분류와 특성 분석 -서울시 14개 주요상권을 중심으로- (Classifying and Characterizing the Types of Gentrified Commercial Districts Based on Sense of Place Using Big Data: Focusing on 14 Districts in Seoul)

  • 김영재;박인권
    • 지역연구
    • /
    • 제39권1호
    • /
    • pp.3-20
    • /
    • 2023
  • 본 연구는 젠트리피케이션이 발생한 상권의 장소성을 파악하여 상권의 확장과 쇠퇴 속에서 장소성의 구체적인 모습을 유형화하고 유형별 특징을 분석하는 것을 목적으로 한다. 소셜 미디어를 통해 수집된 대용량 문서를 활용하여 위계적 군집분석을 시행하였으며, 지역별 장소성을 인지적 차원의 <경험>과 실재적 차원의 <상권특성>으로 구분하여 상권 군집별 특성을 확인하였다. 이를 위해 잠재 디리클레 할당(Latent Dirichlet Allocation: LDA) 토픽모델링 기법과 서울시 우리마을가게 상권분석서비스를 통해 수집된 상권별 매출액 통계자료를 활용하였다. 분석 결과 서울시 젠트리피케이션 상권은 고유한 특성을 가진 '연극 상권', '전통문화 상권', '여성 미용 상권', '고급음식점 및 의료서비스 상권', '트렌디 상권'으로 분류되는 것으로 나타났다. 연구의 결과를 바탕으로 보다 효율적이고 지역별 특색에 맞는 상업정책들을 시행할 수 있을 것으로 기대한다.

IRFP-tree(Intersection Rule Based FP-tree): 메모리 효율성을 향상시키기 위해 교집합 규칙 기반의 패러다임을 적용한 FP-tree (IRFP-tree: Intersection Rule Based FP-tree)

  • 이정훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권3호
    • /
    • pp.155-164
    • /
    • 2016
  • 대용량 데이터베이스의 빈도패턴 분석을 위해 기존의 Apriori 방식의 단점을 보완할 수 있는 새로운 트리 기반의 빈도 패턴 분석 알고리즘이 최근 다양하게 연구되고 있다. 그 중 FP-tree는 이러한 빈도 패턴을 분석하기 위해 빈도 패턴을 표현하는 트리 구조로 단 두 번의 전체 데이터베이스 스캔을 통해 빠르게 트리를 구성할 수 있으며 FP-grwoth를 통해 빈도 패턴을 분석할 수 있다. 이처럼 빈도 패턴 트리의 노드 수는 트리 자체의 메모리 할당량과도 연관이 있지만 그 후 growth의 메모리 자원 소비 및 처리 속도에도 영향을 미치게 된다. 따라서 빈도 패턴 트리의 노드 수의 감소는 트리 자체뿐만 아니라 빈도 패턴 분석에 있어서도 매우 중요하다. 하지만 FP-tree는 전체 아이템 수 라는 고정된 기준 문제로 인해 충분한 노드 수의 압축률을 갖지 못하고 있다. 본 논문에서는 이러한 FP-tree의 문제를 보완하여 좀 더 노드 수를 감소시킬 수 있도록 교집합 규칙이라는 새로운 패러다임을 적용한 빈도 패턴 트리인 IRFP-tree를 제시하고 실험을 통해 그 성능에 대해 증명하였다.

의미적 토픽 기반 지식모델의 통합에 관한 연구 (A study on integration of semantic topic based Knowledge model)

  • 전승수;이상진;배상태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.181-183
    • /
    • 2012
  • 최근 자연어 및 정형언어 처리, 인공지능 알고리즘 등을 활용한 효율적인 의미 기반 지식모델의 생성과 분석 방법이 제시되고 있다. 이러한 의미 기반 지식모델은 효율적 의사결정트리(Decision Making Tree)와 특정 상황에 대한 체계적인 문제해결(Problem Solving) 경로 분석에 활용된다. 특히 다양한 복잡계 및 사회 연계망 분석에 있어 정적 지표 생성과 회귀 분석, 행위적 모델을 통한 추이분석, 거시예측을 지원하는 모의실험(Simulation) 모형의 기반이 된다. 본 연구에서는 이러한 의미 기반 지식모델을 통합에 있어 텍스트 마이닝을 통해 도출된 토픽(Topic) 모델 간 통합 방법과 정형적 알고리즘을 제시한다. 이를 위해 먼저, 텍스트 마이닝을 통해 도출되는 키워드 맵을 동치적 지식맵으로 변환하고 이를 의미적 지식모델로 통합하는 방법을 설명한다. 또한 키워드 맵으로부터 유의미한 토픽 맵을 투영하는 방법과 의미적 동치 모델을 유도하는 알고리즘을 제안한다. 통합된 의미 기반 지식모델은 토픽 간의 구조적 규칙과 정도 중심성, 근접 중심성, 매개 중심성 등 관계적 의미분석이 가능하며 대규모 비정형 문서의 의미 분석과 활용에 실질적인 기반 연구가 될 수 있다.

변형된 FP-Tree를 기반한 상품 추천 시스템 (The Goods Recommendation System based on modified FP-Tree Algorithm)

  • 김종희;정순기
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권11호
    • /
    • pp.205-213
    • /
    • 2010
  • 연관규칙 마이닝 기법 중에 하나인 FP-트리 알고리즘을 이용하는 추천시스템이 시도되고 있다. 본 논문에서는 트랜�Ъ� 데이터베이스로부터 빈발 2-항목집합만을 추출하여 연관규칙을 생성하는 변형된 FP-알고리즘을 사용하는 추천시스템을 제안하였다. 제안된 추천시스템은 전처리 모듈, 학습 모듈, 추천 모듈 및 평가 모듈로 구성되었다. 제안된 추천시스템의 실험을 통하여 상품 추천의정확률과 재현율과 F-Measure와 성공률과 추천실행시간을 수행하였으며, 순차패턴 마이닝 기법을 사용하는 추천시스템과의 성능을 비교분석 하였다. 순차패턴 마이닝기법을 사용하는 추천시스템과 학습 성능, 추천 성능을 비교한 결과 학습 성능은 5배 이상 향상되었으며, 추천 성능은 20%이상 향상 되었다. 결론적으로, 순차패턴 추천시스템과 같은 데이터를 가지고 실험하여 추천시스템 성능의 타당성에는 보다 나은 시스템임을 입증 하였다.

의미 기반의 지식모델 통합과 탐색에 관한 연구 (A study on integrating and discovery of semantic based knowledge model)

  • 전승수
    • 인터넷정보학회논문지
    • /
    • 제15권6호
    • /
    • pp.99-106
    • /
    • 2014
  • 최근 자연어 및 정형언어 처리, 인공지능 알고리즘 등을 활용한 효율적인 의미 기반 지식모델의 생성과 분석 방법이 제시되고 있다. 이러한 의미 기반 지식모델은 효율적 의사결정트리(Decision Making Tree)와 특정 상황에 대한 체계적인 문제해결(Problem Solving) 경로 분석에 활용된다. 특히 다양한 복잡계 및 사회 연계망 분석에 있어 정적 지표 생성과 회귀 분석, 행위적 모델을 통한 추이분석, 거시예측을 지원하는 모의실험 모형의 기반이 된다. 하지만 대부분의 지식 모델은 특정 지표나 정제된 데이터를 수동적으로 모델링하여 분석에 활용한다. 본 논문에서는 텍스트 마이닝 기술을 통해 방대한 비정형 정보로부터 지식 모델을 구성하는 토픽인자와 관계 노드를 생성하고 이를 통합하는 방법과 정형적 알고리즘을 제시한다. 이를 위해 먼저, 텍스트 마이닝을 통해 도출되는 키워드 맵을 동치적 지식맵으로 변환하고 이를 의미적 지식모델로 통합하는 방법을 설명한다. 또한 키워드 맵으로부터 유의미한 토픽 맵을 투영하는 방법과 의미적 동치 모델을 유도하는 알고리즘을 제안한다.

워크플로우 마이닝을 위한 제어 경로 분석 메커니즘 (A Control Path Analysis Mechanism for Workflow Mining)

  • 민준기;김광훈;정중수
    • 인터넷정보학회논문지
    • /
    • 제7권1호
    • /
    • pp.91-99
    • /
    • 2006
  • 본 논문에서는 워크플로우 제어경로 분석 메커니즘을 제안한다. 이는 워크플로우 및 비즈니스 프로세스 기술의 활성화와 더불어 이의 적용사례가 급속히 늘어나면서 워크플로우 및 비즈니스 프로세스의 추적성과 재발견성을 최대화시키기고자 최근에 이슈화되고 있는 워크플로우 마이닝 또는 프로세스 재발견 기법으로 활용될 수 있다. 특히, 본 논문에서는 제안하는 메커니즘은 두 가지 주요요소로 구성되는데, 하나는 워크플루우의 제어경로 분석을 통해 제어경로 결정 트리를 생성하는 부분이며, 다른 하나는 워크플로우의 모니터링과 실행 로그 정보로부터 워크플로우의 제어 경로를 기반으로 하는 워크프로우 실행 이력을 마이닝하는 부분이다. 결과적으로, 이 메커니즘을 통해 습득된 워크플로우 제어경로 기반 재발견 지식과 실행 이력 정보는 워크플로우의 제어경로 관련 고급정보를 구축하는데 이용될 수 있을 뿐 만 아니라 최종적으로 해당 워크플로우의 품질을 고급화시키기 위한 리엔지니어링의 주요 기반정보로 활용될 수 있다.

  • PDF

빅데이터 기반 시민의견 모니터링 방안 연구 : "경기지역화폐"를 중심으로 (A Study on Monitoring Method of Citizen Opinion based on Big Data : Focused on Gyeonggi Lacal Currency (Gyeonggi Money))

  • 안순재;이새미;유승의
    • 디지털융복합연구
    • /
    • 제18권7호
    • /
    • pp.93-99
    • /
    • 2020
  • 본 연구에서는 비정형적인 대용량의 텍스트 자료로부터 유의미한 정보를 추출하는 빅데이터 분석방법 중 텍스트 마이닝을 이용하여 시행 중인 정책과 제도에 대한 시민의견을 모니터링 할 수 있는지 확인하였다. '경기지역화폐'와 관련된 5,108건의 신문기사와 748건의 온라인 카페글을 수집하여 빈도분석, TF-IDF분석, 연관분석, 워드트리 시각화 분석을 수행하였다. 그 결과로 기사에서는 지역화폐의 도입 목적, 제공되는 혜택, 사용방법에 관련된 내용이 많았고 카페글에서는 지역화폐의 실사용과 관련된 내용 위주로 작성이 되어있음을 확인하였다. 또한 지역화폐 활성화를 위해서 뉴스는 정보전달자로서 지역화폐의 홍보에 관여하고 있었고 카페글은 지역화폐 사용자인 시민들의 의견으로 이루어져 사용과 관련된 실제적인 정보 교환의 장으로 기능하고 있었다. 지역화폐뿐만 아니라 다양한 정책과 제도에 관해서도 SNS와 텍스트 마이닝을 통해 시민들의 의견을 수렴하여 효과적으로 활성화시킬 수 있을 것으로 보인다.

설명가능한 의사결정을 위한 마이닝 기술 (Research on Mining Technology for Explainable Decision Making)

  • 정경용
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.186-191
    • /
    • 2023
  • 데이터 처리 기술은 의사결정을 위해 중요한 역할을 하며, 데이터 결측값 및 이상값 처리, 예측, 추천 모델 등이 포함 된다. 이는 모든 과정과 결과의 타당성, 신뢰성, 정확성에 대한 명확한 설명이 필요하다. 또한 의사결정트리, 추론 등을 이용한 설명가능한 모델을 통해 데이터의 문제를 해결하고, 다양한 유형의 학습을 고려하여 모델 경량화를 진행할 필요가 있다. 육하원칙을 적용한 다중 계층 마이닝 분류 방법은 데이터 전처리 후 트랜잭션에서 빈번하게 발생하는 변수와 속성 간의 다차원 관계를 발견하는 방법이다. 이는 트랜잭션에서 마이닝을 이용하여 유의미한 관계를 발견하고, 회귀분석을 통해 데이터를 모델링 하는 방법을 설명한다. 이에따라 확장 가능한 모델과 로지스틱 회귀모델을 개발하고, 데이터 정제, 관련성 분석, 데이터 변환, 데이터 증강을 통해 클래스 레이블을 생성하여 설명가능한 의사결정을 위한 미이닝 기술을 제안한다.

공간 데이터의 분포를 고려한 공간 엔트로피 기반의 의사결정 트리 기법 (A Spatial Entropy based Decision Tree Method Considering Distribution of Spatial Data)

  • 장윤경;유병섭;이동욱;조숙경;배해영
    • 정보처리학회논문지B
    • /
    • 제13B권7호
    • /
    • pp.643-652
    • /
    • 2006
  • 의사결정 트리는 데이터 마이닝의 분류와 예측 작업에 주로 사용되는 기법 중의 하나이다. 실생활에서 공간의사결정을 위한 분류를 수행할 때에는 인접 데이터의 위치와 분산도를 고려하는 것이 매우 중요하다. 기존의 공간 의사결정 트리는 데이터의 공간적 특성을 표현하기 위해 각 객체간의 유클리디안 거리비율을 엔트로피로 반영하여 트리 구축 시 이용하였다. 그러나 이것은 공간 객체간의 거리 비율만을 설명할 뿐 공간 차원에서의 데이터 분산 정도와 각 분류된 클래스간의 연관관계 등은 파악할 수 없다는 한계점이 있었다 본 논문에서는 분산도와 차별도 기반의 공간 엔트로피를 이용하여 공간 데이터의 분포도를 반영하는 공간 의사결정 트리를 제안한다 분산도는 분류된 클래스 내의 공간 객체 분포도를 나타내고 차별도는 다른 클래스 내 공간 객체와의 분포도 및 관계성을 나타낸다. 이러한 분산도와 차별도의 비율을 엔트로피 계산 시 이용함으로써 비공간적 속성으로 분류된 각 클래스가 공간적으로는 얼마나 뚜렷하게 분류되는지 알 수 있게 한다. 제안 기법은 정확성과 계산 비용에 있어서 기존 기법보다 각각 약 18%, 11%의 성능 향상을 보였다.

침입탐지시스템의 성능향상을 위한 결정트리 기반 오경보 분류 (Classification of False Alarms based on the Decision Tree for Improving the Performance of Intrusion Detection Systems)

  • 신문선;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권6호
    • /
    • pp.473-482
    • /
    • 2007
  • 네트워크 기반의 침입탐지시스템에서는 수집된 패킷데이타의 분석을 통해 침입인지 정상행위 인지를 판단하여 경보를 발생 시키며 이런 경보데이타의 양은 기하급수적으로 증가하고 있다. 보안관리자는 이러한 대량의 경보데이타들을 분석하고 통합 관리하여 네트워크 보안레벨을 진단하거나 시간에 따른 적절한 대응을 하는데 유용하게 사용하여야 한다. 그러나 오경보의 비율이 너무 높아 경보 데이터들간의 상관관계 분석이나 고수준의 의미 분석에 어려움이 많으므로 분석결과에 대한 신뢰성이나 분석의 효율성이 낮아지는 문제점을 가진다. 이 논문에서는 데이타 마이닝의 분류 기법을 적용하여 오경보율을 최소화하는 방법을 제안한다. 결정트리기반의 분류 기법을 오경보 분류 모델로 적용하여 오경보들 중 실제는 공격이 아님에도 불구하고 공격이라 판단된 오경보를 정상으로 분류할 수 있는 경보 데이타 분류 모델을 설계하고 구현한다. 구현된 경보데이타 분류 모델은 오경보율을 최소화하므로 경보데이타의 분석 및 통합을 통해 경보메시지의 축약 및 침입탐지시스템의 탐지율을 높이는데 활용될 수 있다.