• Title/Summary/Keyword: 투수계수 특성곡선

Search Result 58, Processing Time 0.019 seconds

Effect of Hysteresis on Soil-Water Characteristic Curve in Weathered Granite and Gneiss Soil Slopes during Rainfall Infiltration (풍화계열 사면의 불포화 함수특성곡선 이력이 강우 침투에 미치는 영향)

  • Shin, Gil-Ho;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.55-64
    • /
    • 2006
  • Shallow failures of slopes in weathered soils are caused by infiltration caused by prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the water infiltration. In this paper, hysteresis on soil-water characteristic curve (SWCC) of granite and gneiss weathered soils is investigated using transient flow analysis respectively. Each case was subjected to artificial rainfall intensities and time duration depending on the laboratory-based drying and wetting processes. The results show that the unsaturated seepage on weathered slopes are very much affected by the initial suction of soils and unsaturated permeability of the soils. In addition, a granite weathered soil has a lower air-entry value, residual matric suction, and wetting front suction and less hysteresis loop than a gneiss weathered soil.

Estimation of Hydraulic Parameters from Slug, Single Well Pumping and Step-drawdown Tests (순간수위 변화시험, 단공양수시험 및 단계양수시험을 통한 수리상수 추정연구)

  • Jo, Yun-Ju;Lee, Jin-Yong;Jun, Seong-Chun;Cheon, Jeong-Yong;Kwon, Hyung-Pyo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.203-212
    • /
    • 2010
  • The aim in this study is used to develop the remediation technologies for contaminated ground water. Slug, single well pumping and step-drawdown tests have been used to obtain hydraulic parameter estimates in the field. Slug tests yield hydraulic conductivity values using the Bouwer and Rice and C-B-P analysis methods. The mean and median hydraulic conductivity values of Bouwer and Rice method are $4.48{\times}10^{-3}$ and $1.16{\times}10^{-3}cm/sec$, respectively. On the other hand, C-B-P method gave mean and median hydraulic conductivity values of $2.37{\times}10^{-3}$ and $7.09{\times}10^{-4}cm/sec$, respectively. These analyses show a trend for the Bouwer and Rice method to yield lower hydraulic conductivity values in low permeability zones of granite in the study area. Sing well pumping test data were calculated through type curve in GW7, GW12 and MW9 wells. It could be interpreted that the differences of hydraulic conductivity and transmissivity values between GW7 and GW12, MW9 is related with fault clays and fractures in the bedrock among the wells. Step-drawdown tests were carried out in the KDPW1 and KDPW2 wells. The hydraulic parameter of KDPW1 and KDPW2 showed very litter difference between the values. The study of hydraulic parameter estimates can be used to purify in contaminated groundwater.

Estimation of Soil Water Characteristic Curve and Unsaturated Permeability Coefficient for Domestic Weathered Grainite Soil (국내 풍화토의 함수특성곡선 및 불포화 투수계수 추정에 관한 연구)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Hye-Ji;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.334-341
    • /
    • 2004
  • The coefficient of permeability is one of the most important properties in unsaturated soils. The permeability varies with change in the water content as the soil water characteristic curve(SWCC) does. Thus the permeability curve of unsaturated soils has the similar shape with the soil-water characteristic curve(SWCC). Therefore, the methodologies have been studied to simply predict the unsaturated permeability from the SWCC. In this study, the experimental tests of SWCC and permeability were carried out for domestic weathered granite soils. The SWCC test results were fitted to Fredlund and Xing's SWCC equation and then it was found that there are some relationships between the parameters of SWCC equation and the basic soil properties. Accordingly we used an ANN(artificial neural network) model to obtain the SWCC parameters from the basic soil properties. Finally, the coefficients of permeability were predicted from these results by a prediction model.

  • PDF

Strain-rate-dependent Consolidation Characteristics of Busan Clay (부산점토의 변형률 속도 의존적인 압밀특성)

  • Kim Yun-Tae;Jo Sang-Chan;Jo Gi-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.127-135
    • /
    • 2005
  • In order to analyze effects of strain rate on consolidation characteristics of Busan clay, a series of constant rate of strain (CRS) consolidation tests with different strain rate and incremental loading tests (ILT) were performed. From experimental test results on Busan clay, it was found that the preconsolidation pressure was dependent on the corresponding strain rate occurring during consolidation process. Also, consolidation curves normalized with respect to preconsolidation pressure gave a unique stress-strain curve. Coefficient of consolidation and permeability estimated from CRS test had a tendency to converge to a certain value at normally consolidated range regardless of strain rate. An increase in excess pore pressure was observed after the end of loading without change of total stress on the incremental loading test, which phenomenon is called Mandel-Cryer effect. It was also found that rapid generation of excess pore pressure took place due to collapse of soil structure as effective stress approached to preconsolidation pressure.

Sensitivity of Seepage Behavior of Dam to Unsaturated Soil Properties (불포화 수리특성에 대한 댐체 침투 거동의 민감도 분석)

  • Cho Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.119-131
    • /
    • 2005
  • Seepage analysis through unsaturated zone based on the theory of unsaturated flow is commonly performed to evaluate dam safety. However, the concepts of unsaturated soil behavior have not been transferred into the hands of practicing geotechnical engineers since the problems involving unsaturated soils often have the appearances of being extremely complex. The behavior of dam such as seepage rate and the pore water pressure distribution is different according to the unsaturated hydraulic properties, but nevertheless simply assumed properties have been used due to insufficient data from domestic soils. In this paper, the effect of unsaturated hydraulic properties on the behavior of dam was studied through a series of numerical analyses, and then the results were discussed. It is observed that water table moves at a (aster rate, as the values of unsaturated soil parameter a and n increase. The value of m showed opposite trend. The sensitivity calculated using the approximation form showed maximum values near the water table. And the value of n that is related to the slope of soil water characteristic curve gives greatest influence on the change of sensitivity with time.

Soil-Water Characteristic Curve of Sandy Soils Containing Biopolymer Solution (바이오폴리머를 포함한 모래지반의 흙-습윤 특성곡선 연구)

  • Jung, Jongwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.21-26
    • /
    • 2018
  • Soil-water characteristic curve, which is called soil retention curve, is required to explore water flows in unsaturated soils, relative permeability of water in multi-phase fluids flow, and change to stiffness and volume of soils. Thus, the understanding of soil-water characteristic curves of soils help us explore the behavior of soils inclduing fluids. Biopolymers are environmental-friendly materials, which can be completely degraded by microbes and have been believed not to affect the nature. Thus, various biopolymers such as deacetylated power, polyethylene oxide, xanthan gum, alginic acid sodium salt, and polyacrylic acid have been studies for the application to soil remediation, soil improvement, and enhanced oil recovery. PAA (polyacrylic acid) is one of biopolymers, which have shown a great effect in enhanced oil recovery as well as soil remediation because of the improvement of water-flood performance by mobility control. The study on soil-water characteristic curves of sandy soils containing PAA (polyacrylic acid) has been conducted through experimentations and theoretical models. The results show that both capillary entry pressure and residual water saturation dramatically increase according to the increased concentration of PAA (polyacrylic acid). Also, soil-water characteristic curves by theoretical models are quite well consistent with the results by experimental studies. Thus, soil-water characteristic curves of sandy soils containing biopolymers such as PAA (polyacrylic acid) can be estimated using fitting parameters for the theoretical model.

Determination of Hydraulic Conductivities in the Sandy Soil Layer through Cross Correlation Analysis between Rainfall and Groundwater Level (강우-지하수위 상관성 분석을 통한 사질토층의 수리전도도 산정)

  • Park, Seunghyuk;Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.303-314
    • /
    • 2019
  • Surface permeability and shallow geological structures play significant roles in shaping the groundwater recharge of shallow aquifers. Surface permeability can be characterized by two concepts, intrinsic permeability and hydraulic conductivity, with the latter obtained from previous near-surface geological investigations. Here we propose a hydraulic equation via the cross-correlation analysis of the rainfall-groundwater levels using a regression equation that is based on the cross-correlation between the grain size distribution curve for unconsolidated sediments and the rainfall-groundwater levels measured in the Gyeongju area, Korea, and discuss its application by comparing these results to field-based aquifer test results. The maximum cross-correlation equation between the hydraulic conductivity derived from Zunker's observation equation in a sandy alluvial aquifer and the rainfall-groundwater levels increases as a natural logarithmic function with high correlation coefficients (0.95). A 2.83% difference between the field-based aquifer test and root mean square error is observed when this regression equation is applied to the other observation wells. Therefore, rainfall-groundwater level monitoring data as well as aquifer test are very useful in estimating hydraulic conductivity.

Influence of Soil Characteristic and Rainfall Intensity on Matric Suction of Unsaturated Weathered Soil Slope (불포화 풍화토 사면의 모관흡수력 분포에 대한 지반조건과 강우강도의 영향)

  • Kim, Yong Min;Lee, Kwang Woo;Kim, Jung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1017-1025
    • /
    • 2013
  • The monolithically coupled finite element analysis for a deformable unsaturated soil slope is performed to investigate matric suction distribution on a soil slope subjected to rainfall infiltration, which can consider the hydraulic-mechanical characteristics for the analysis. The soil-water characteristic curves (SWCC) are experimentally determined to estimate three types of hydraulic properties of domestic areas. Based on the physical properties, the distribution of matric suction is investigated by considering the major factors, such as soil conditions, rainfall intensities, and slope angles. It is found from the results of this study that the matric suction rapidly decreases with an increase in rainfall intensity, regardless a slope angle. The slope surface is more easily saturated when its saturated hydraulic conductivity is smaller than rainfall intensity, and for the case of multi-layered soil slope, hydraulic characteristics of slope surface has a significant influence on matric suction distribution.

Effect of Rainfall-Induced Infiltration on Unsaturated Weathered Soils with Varying Clay Contents (강우시 점토함유량에 따른 화강풍화토의 불포화 침투 특성)

  • 유남동;정상섬;김재홍;박성완
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.159-166
    • /
    • 2004
  • In this study, experiments on the SWCC were performed in order to find out the characteristics of unsaturated soil and to analyze the stability of unsaturated weathered slopes with rainfall-induced wetting. Several soil types classified by mixture portion of clay (CH) in the weathered soil (SW) were used in experimental tests. To achieve the SWCC, the filter paper method was used on SW with varying clay contents. A tensiometer test was used for measuring wetting front suction of the soils in a laboratory with varying relative densities. Based on the experimental results, it is shown that the wetting front suction increases as clay contest of mixture soil increases : in particular, the wetting front suction increases sharply as the clay contents increase. It is also found that wetting front suction affects the initial wetting band depth and stability of the slope.

Evaluation of Compaction Properties of Subgrade Soil by Gyratory Compaction Curve (선회다짐곡선특성을 이용한 노상토의 다짐도 평가)

  • Lee, Kwan-Ho;Cha, Min-Kyung;Lim, Yu-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • Compacted soil are used in almost roadway construction with compaction of soil. The direct consequence of soil compaction is densification, which in turn results in higher strength, lower compressibility, and lower permeability. The standard and modified Proctor tests are the most common methods. Both of these tests utilize impact compaction, although impact compaction shows no resemblance to any type of field compaction and is ineffective for granular soils. It has been dramatic advances in field compaction equipment. Therefore, the Proctor tests no longer represent the maximum achievable field density. The main objectives of this research are a survey of current field compaction equipment, laboratory investigation of compaction characteristics, and field study of compaction characteristics. The findings from the laboratory and compaction program were used to establish preliminary guidelines for suitable laboratory compaction procedures.