DOI QR코드

DOI QR Code

불포화 풍화토 사면의 모관흡수력 분포에 대한 지반조건과 강우강도의 영향

Influence of Soil Characteristic and Rainfall Intensity on Matric Suction of Unsaturated Weathered Soil Slope

  • 김용민 (연세대학교 토목환경공학과) ;
  • 이광우 (연세대학교 토목환경공학과) ;
  • 김정환 (연세대학교 토목환경공학과)
  • 투고 : 2012.06.06
  • 심사 : 2013.04.01
  • 발행 : 2013.05.30

초록

본 연구에서는 강우 침투에 의한 사면의 모관흡수력 분포특성을 분석하기 위하여 수리학적-역학적 특성을 고려한 동시연계해석을 수행하였다. 이를 위해, 국내 3가지 지역에서 채취한 풍화토를 대상으로 함수특성곡선(SWCC)을 산정하였으며, 이를 토대로 지반조건, 강우특성, 사면경사에 따른 모관흡수력의 변화를 관측하였다. 그 결과, 강우강도가 증가함에 따라 사면내의 모관흡수력은 급격히 감소하는 경향이 나타났으며, 사면 경사에는 큰 영향을 받지 않는 것으로 나타났다. 또한 강우강도보다 포화투수계수가 작은 지반은 표층에서 포화가 쉽게 일어나는 것을 확인하였으며, 다층으로 존재하는 경우에도 사면표층 지반의 수리학적 특성이 모관흡수력 분포에 큰 영향을 주는 것으로 나타났다.

The monolithically coupled finite element analysis for a deformable unsaturated soil slope is performed to investigate matric suction distribution on a soil slope subjected to rainfall infiltration, which can consider the hydraulic-mechanical characteristics for the analysis. The soil-water characteristic curves (SWCC) are experimentally determined to estimate three types of hydraulic properties of domestic areas. Based on the physical properties, the distribution of matric suction is investigated by considering the major factors, such as soil conditions, rainfall intensities, and slope angles. It is found from the results of this study that the matric suction rapidly decreases with an increase in rainfall intensity, regardless a slope angle. The slope surface is more easily saturated when its saturated hydraulic conductivity is smaller than rainfall intensity, and for the case of multi-layered soil slope, hydraulic characteristics of slope surface has a significant influence on matric suction distribution.

키워드

참고문헌

  1. Kim, J. H., Park, S. W., Jeong, S. S. and Yoo, J. H. (2002). "A study of stability analysis on unsaturated weathered slopes based on rainfall-induced wetting." Journal of Korean Geotechnical Society. Vol. 18, No. 2, pp. 123-136 (in Korean).
  2. Kim, J. H., Hwang, W. K., Song, Y. S. and Kim, T. H. (2012). "Effect of matric suction in soils due to hysteretic soil water characteristic curves." Journal of Korean Geotechnical Society. Vol. 28, No. 4, pp. 91-100 (in Korean). https://doi.org/10.7843/kgs.2012.28.4.91
  3. Kim, J. H. and Hwang, Y. C. (2011). "Finite element analysis of partially saturated soil considering pore-air pressure." Journal of Korean Geotechnical Society. Vol. 27, No. 3, pp. 95-102 (in Korean). https://doi.org/10.7843/kgs.2011.27.3.095
  4. Lee, K. H, Jeong, S. S. and Kim. T. H. (2007). "Effect of fines on the stability of unsaturated soil slopes." Journal of Korean Geotechnical Society. Vol. 23, No. 3, pp. 101-109 (in Korean).
  5. Jeong, S. S., Choi, J. Y. and Lee, J. H. (2009). "Stability analysis of unsaturated weathered soil slopes considering rainfall duration." Journal of Korean Civil Engineers Society. Vol. 29, No. 1, pp. 1-9 (in Korean).
  6. Cho, S. E. and Lee, S. R. (2000). "Slope stability analysis of unsaturated soil slopes due to rainfall infiltration." Journal of Korean Geotechnical Society, Vol. 16, No. 1, pp. 51-64 (in Korean).
  7. Alonso, E. E., Batlle, F., Gens, A. and Lloret, A. (1988). "Consolidation analysis of partially saturated soils-Application to earthdam construction." Numerical Methods in Geomechanics, Innsbruck, pp. 1303-1308.
  8. Borja, R.I. (2004). "Cam-clay plasticity. Part V : A Mathematical Framework for Three-phase Deformation and Strain Localization Analyses of Partially Saturated Porous Media." Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp. 5301-5338. https://doi.org/10.1016/j.cma.2003.12.067
  9. Chen, L. and Young, M. H. (2006). "Green-Ampt infiltration model for sloping surfaces." Water Resources Research, Vol. 42, pp. 1-9.
  10. Cho, S. E. and Lee, S. R. (2001). "Instability of unsaturated soil slopes due to infiltration." Computers and geotechnics, Vol. 28, No. 3, pp. 185-208. https://doi.org/10.1016/S0266-352X(00)00027-6
  11. Coussy, O. (2010). Poromechanics, John Wiley and Sons, New York.
  12. Duncan, J. M. (1996). "State of the art: Limit equilibrium and finiteelement analysis of slopes." Journal of Geotechnical engineering, Vol. 122, No. 7, pp. 577-596. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577)
  13. Hughes, T. J. R. (1987). The finite element method, Prentice-Hall, New Jersey, pp. 1-51, 57-75.
  14. Geo-slope International. (2012). Seep/w for finite element seepage analysis, users guide, Calgary, Alta., Canada.
  15. FEFLOW (2012). FEFLOW for fluid flow analysis, user's guide, DHI-WASY, GmbH, Germany.
  16. Jeong, S. S., Kim, J. H. and Lee, K. H. (2008). "Effect of clay content on well-graded sands due to infiltration." Engineering Geology, Vol. 102, No. 1-2, pp. 74-81. https://doi.org/10.1016/j.enggeo.2008.08.002
  17. Kim, J. (2010). Plasticity modeling and coupled finite element analysis for partially-saturated soils, Ph.D. Thesis, University of Colorado, Boulder, US.
  18. Kim, J., Jeong, S. and Richard, A.R. (2012). "Instability of partially saturated soil slopes due to alternation of rainfall pattern." Engineering Geology, Vol.147-148, pp.28-36. https://doi.org/10.1016/j.enggeo.2012.07.005
  19. Kim, J., Jeong, S., Park, S. and Sharma, J. (2004). "Influence of rainfall-induced wetting on the stability of slopes in weathered soils." Engineering Geology, Vol. 75, No. 3-4, pp. 251-262. https://doi.org/10.1016/j.enggeo.2004.06.017
  20. Laloui, L., Klubertanz, G. and Vulliet, L. (2003). "Solid-liquid-air coupling in multiphase porous media." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 27, No. 3, pp. 183-206. https://doi.org/10.1002/nag.269
  21. Lam, L., Fredlund, D. G. and Barbour, S. L. (1987). "Transient seepage model for saturated - unsaturated soil systems : A Geotechnical Engineering Approach." Canadian Geotechnical Journal, Vol. 24, No. 4, pp. 565-580. https://doi.org/10.1139/t87-071
  22. Lambe, P. C. (1996). Residual soils, In: special report 247. Landslides: Investigation and Mitigation, Washington DC: TRB, National Research Council, pp. 507-524.
  23. Ng, C. W. W. and Shi, Q. (1998). "A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage." Computers and geotechnics, Vol. 22, No. 1, pp. 1-28. https://doi.org/10.1016/S0266-352X(97)00036-0
  24. Pham, H.Q. and Fredlund, D.G. (2004). "New apparatus for the measurement of the soil-water characteristic curves." Proceedings of the 57th Canadian Geotechnical Conference, Quebec, Quebec City, Canada.
  25. Rahardjo, H. and Leong, E.C. (1997). "Soil-water characteristic curves and flux boundary problems." Unsaturated Soil Engineering : Practice-Geotechnical Special Publication, Vol. 68, pp. 88-112.
  26. Rahardjo, H., Nio, A. S., Leong, E. C. and Song, N. Y. (2010). "Effect of groundwater table position and soil properties on stability of slope during rainfall." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 11, pp. 1555-1564. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000385
  27. Rahardjo, H., Ong, T. H., Rezaur, R. B. and Leong, E. C. (2007). "Factors controlling instability of homogeneous soil slopes under rainfall." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 33, No. 12, pp. 1532-1543.
  28. Rahardjo, H., Rezaur, R. and Leong, E. (2009). Mechanism of rainfall-induced slope failures in tropical regions, 1st Italian Workshop on Landslides, Vol. 1.
  29. van Genuchten, M. (1980). "Closed-form equation for predicting the hydraulic conductivity of unsaturated soils." Soil Science Society of America Journal, Vol. 44, No. 5, pp. 35-53.

피인용 문헌

  1. Influence of Antecedent Rainfall in Stability Analysis of Unsaturated Soil Slope vol.35, pp.5, 2015, https://doi.org/10.12652/Ksce.2015.35.5.1073
  2. Slope Stability Assessment on a Landslide Risk Area in Ulsan During Rainfall vol.32, pp.6, 2016, https://doi.org/10.7843/kgs.2016.32.6.27