Sensitivity of Seepage Behavior of Dam to Unsaturated Soil Properties

불포화 수리특성에 대한 댐체 침투 거동의 민감도 분석

  • Cho Sung-Eun (Dam Safety Research Center, Korea Institute of Water and Environment)
  • 조성은 (수자원연구원 댐안전연구소)
  • Published : 2005.04.01

Abstract

Seepage analysis through unsaturated zone based on the theory of unsaturated flow is commonly performed to evaluate dam safety. However, the concepts of unsaturated soil behavior have not been transferred into the hands of practicing geotechnical engineers since the problems involving unsaturated soils often have the appearances of being extremely complex. The behavior of dam such as seepage rate and the pore water pressure distribution is different according to the unsaturated hydraulic properties, but nevertheless simply assumed properties have been used due to insufficient data from domestic soils. In this paper, the effect of unsaturated hydraulic properties on the behavior of dam was studied through a series of numerical analyses, and then the results were discussed. It is observed that water table moves at a (aster rate, as the values of unsaturated soil parameter a and n increase. The value of m showed opposite trend. The sensitivity calculated using the approximation form showed maximum values near the water table. And the value of n that is related to the slope of soil water characteristic curve gives greatest influence on the change of sensitivity with time.

댐 안정성 평가를 위하여 불포화 이론을 이용한 침투해석 기법이 널리 사용되고 있으나 지반의 불포화 거동에 대한 인식 부족과 실험절차의 번거로움으로 인하여 입력 물성치에 대한 체계적인 실험과 평가가 일반화되지 못하고 있는 실정이다. 불포화 수리특성에 따라 침투수량 및 간극수압 분포 등 댐체 및 제방의 침투거동이 달라지나 국내 지반에 대한 실험자료 부족으로 대부분 단순 추정에 의한 값을 사용하고 있다 본 연구에서는 불포화 수리특성이 댐체의 침투 거동에 미치는 영향을 살펴보기 위하여 함수특성곡선과 투수계수곡선에 대하여 고찰하고 수치해석을 수행하였다. 해석결과 변수 a와 n은 값이 클수록, m은 값이 작을수록 중력에 의한 침윤선의 하강이 빨리 발생하였다. 유한차분 형식에 의해 개략적으로 계산한 민감도는 침윤선 부근에서 가장 크게 나타났고 시간에 따른 민감도의 변화에는 함수특성곡선의 기울기와 관련된 n값이 가장 큰 영향을 주었다.

Keywords

References

  1. 김윤기 (3003), 투수시험결과 해석에 의한 불포화 풍화토의 투수성에 관한 연구, 석사학위논문, 한국과학기술원
  2. 대청다목적댐 정밀안전진단보고서 (2000), 한국수자원공사, pp.276-277
  3. 댐설계기준 (2003), 한국수자원학회, p.195
  4. 소양강다목적댐 정밀안전진단보고서 (1999), 한국수자원공사, pp.318-319
  5. 안계댐 정밀안전진단 보고서 (2003), 한국건설품질연구원
  6. 안동다목적댐 제1차 정밀안전진단보고서 (2001), 한국수자원공사, p.130
  7. 이성진 (2004), 화강풍화토의 불포화 전단강도 및 함수특성곡선산정에 관한 연구,박사학위논문,한국과학기술원
  8. 임하다목적댐 정밀안전진단보고서 (1997), 한국수자원공사
  9. 전남 광양시 수어댐 정밀안전진단보고서 (1998), 한국수자원공사, p.218
  10. Burdine, N. T. (1953), 'Relative Permeability Calculations from Pore Size Distribution Data', Journal of Petroleum Technology, Vol.5, No.3, pp.71-78
  11. Fredlund, D. G., Xing, A., and Huang, S. (1994), 'Predicting the Permeability Function for Unsaturated Soils Using the Soil-water Characteristic Curve', Canadian Geotechnical Journal, Vol.31, pp.533-546 https://doi.org/10.1139/t94-062
  12. Fredlund, M. D., Fredlund, D. G., and Wilson, G. W. (1997), 'Prediction of the Soil-water Characteristic Curve from Grain-size Distribution and Volume-mass Properties', 3rd Brazilian Symposium on Unsaturated Soils, April, pp.22-25
  13. Kunze, R. J., Uehara, G., and Graham, K. (1968), 'Factors Important in the Calculation of Hydraulic Conductivity', Proc. Soil Sci. Soc. Amer., Vol.32, pp.760-765
  14. Arya, L. M. and Paris, J. F. (1981), 'A Physico-empirical Model to Predict the Soil Moisture Characteristic from Particle Size Distribution and Bulk Density Data', Soil Science American Journal, Vol.45, pp.1023-1030 https://doi.org/10.2136/sssaj1981.03615995004500060004x
  15. Lam, L. and Fredlund, D. G. (1987), 'Transient Seepage Model for Saturated-unsaturated Soil Systems : a Geotechnical Engineering Approach', Canadian Geotechnical Journal, Vol.24, pp.565-580 https://doi.org/10.1139/t87-071
  16. Leong, E. C. and Rahardjo, H. (1997), 'Review of Soil-water Characteristic Curve Equations', Journal of Geotechnical and Geoenvironmental Engineering, Vol.123, No.12, pp.1106-1117 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1106)
  17. Papagiannakis, A. T. and Fredlund, D. G. (1984), 'A Steady State Model for Flow in Saturated-unsaturated Soils', Canadian Geotechnical Journal, Vol.21, pp.419-430 https://doi.org/10.1139/t84-046
  18. Rawls, W. J. and Brakensiek, D. L. (1985), 'Prediction of Soil Water Properties for Hydrologic Modeling', In E. B. Jones and T. J. Ward (Eds), Watershed Management in the Eighties, Proc. of Symp. Sponsored by Comm. on Watershed Management, I&D Division, ASCE Convention, Denver, Co, April 30-May 1, pp. 293-299
  19. SEEP/W (Version 5) Manual (2003), Geo-slope International, Canada
  20. Sillers, W. S., Fredlund, D. G., and Zakerzadeh, N. (2001), 'Mathematical Attributes of Some Soil Water Characteristic Curve Models', Geotechnical and Geological Engineering, Vol.19, pp.243-283 https://doi.org/10.1023/A:1013109728218
  21. Taylor, R. L. and Brown, C. B. (1967), 'Darcy Flow Solutions with a Free Surface', Proc. ASCE J. Hydraulics Div. Vol.93, pp.25-33
  22. van Genuchten, M. T. (1980), 'A Closed Form Equation for Prediction the Hydraulic Conductivity of Unsaturated Soils', Soil Science Society America Journal, Vol.44, pp.892-898 https://doi.org/10.2136/sssaj1980.03615995004400050002x
  23. Vereecken, H., Maes, J. Feyen, J., and Darius, P. (1989), 'Estimating the Soil Moisture Retention Characteristic from Texture, Bulk Density, and Carbon Content', Soil Science, Vol.148, No.6, pp. 389-403
  24. Williams, J. R., Ouyang, Y., Chen, J.-S., and Ravi, V. (1998), 'Estimation of Infiltration Rate in the Vadose Zone: compilation of simple mathematical models', Volume II, National Risk Management Research Laboratory, U.S. EPA, Cincinnati, Ohio 45268, EPA/600/R-97/128b, pp.C2-C6