Estimation of Hydraulic Parameters from Slug, Single Well Pumping and Step-drawdown Tests

순간수위 변화시험, 단공양수시험 및 단계양수시험을 통한 수리상수 추정연구

  • Received : 2010.03.29
  • Accepted : 2010.06.10
  • Published : 2010.06.30

Abstract

The aim in this study is used to develop the remediation technologies for contaminated ground water. Slug, single well pumping and step-drawdown tests have been used to obtain hydraulic parameter estimates in the field. Slug tests yield hydraulic conductivity values using the Bouwer and Rice and C-B-P analysis methods. The mean and median hydraulic conductivity values of Bouwer and Rice method are $4.48{\times}10^{-3}$ and $1.16{\times}10^{-3}cm/sec$, respectively. On the other hand, C-B-P method gave mean and median hydraulic conductivity values of $2.37{\times}10^{-3}$ and $7.09{\times}10^{-4}cm/sec$, respectively. These analyses show a trend for the Bouwer and Rice method to yield lower hydraulic conductivity values in low permeability zones of granite in the study area. Sing well pumping test data were calculated through type curve in GW7, GW12 and MW9 wells. It could be interpreted that the differences of hydraulic conductivity and transmissivity values between GW7 and GW12, MW9 is related with fault clays and fractures in the bedrock among the wells. Step-drawdown tests were carried out in the KDPW1 and KDPW2 wells. The hydraulic parameter of KDPW1 and KDPW2 showed very litter difference between the values. The study of hydraulic parameter estimates can be used to purify in contaminated groundwater.

본 연구는 연구지역의 수리상수를 추정하여 오염된 지하수의 정화공법 설계에 효과적으로 사용하는데 목적이 있다. 이를 위하여 수행된 수리시험은 순간수위변화시험, 단공양수시험 및 단계양수시험이다. 순간수위변화시험은 대표적인 Bouwer and Rice 직선법과 C-B-P 특성곡선법(type curve)으로 해석하였다. Bouwer and Rice법으로 해석한 평균 수리전도도 값은 $4.48{\times}10^{-3}cm/sec$ 이며 중앙값은 $1.16{\times}10^{-3}cm/sec$이다. C-B-P법으로 구한 평균 수리전도도 값은 $2.37{\times}10^{-3}cm/sec$이며 중앙값은 $7.09{\times}10^{-4}cm/sec$이다. 두 해석 결과 연구지역의 하부가 화강암으로 이루어져 있어 대체로 투수성이 낮아 Bouwer and Rice법으로 해석한 수리전도도가 높게 나타난다. 단공양수시험은 GW7, GW12 및 MW9 관정에서 수행하였으며 여러 종류의 특성곡선법을 적용하여 해석하였다. GW7 관정은 GW12 및 MW9 관정보다 수리전도도 및 투수량 계수가 낮으며 이는 기반암의 파쇄대 및 절리의 여부와 관련된 것으로 판단된다. 단계양수시험은 KDPW1 및 KDPW2 관정에서 수행하였으며 해석방법에 따라 수리상수 값의 차이가 나타나지만 매우 미미하며 본 연구에서 해석한 수리상수 값은 오염지하수 정화설계에 있어 적절히 활용될 것으로 판단된다.

Keywords

References

  1. 강원도, 2005, 원주시 우산공단 일대 토양 및 지하수오염 복원을 위한 정밀조사 및 기본설계용역 최종보고서. 한국수자원공사, 309 p.
  2. 김민환, 1998, 누수대수층에 대한 수리상수 추정과 해석. 지하수환경, 5(3), 123-128.
  3. 박병권, 우영균, 장호완, 1989, 원주도폭 지질보고서(1 : 50,000). 한국지질자원연구소, 37 p.
  4. 이용수, 2008, 단공양수시험 분석법 개발. 강원대학교, 석사학위논문, 57 p.
  5. 이진용, 송성호, 이강근, 2005, 단계양수시험 해석시 시간 선택이 해석결과에 미치는 영향. 지하수토양환경, 10(2), 59-65.
  6. 이진용, 이강근, 정형재, 배광옥, 1999, 순간수위변화 및 양수시험을 통한 수리상수 추정의 문제점 분석. 지하수환경, 6(1), 14-22.
  7. 이철우, 이대하, 정지곤, 김구영, 김용제, 2002, 양수시험시 방사상흐름을 보이는 균열암반 대수층에서의 우물손실. 지하수토양환경, 7(4), 17-23.
  8. 정상용, 김병우, 김규범, 권해우, 2009, 단계양수시험 해석시 우물상수 산정 방법이 우물효율에 미치는 영향. 지질공학, 19(1), 71-79.
  9. 조윤주, 이진용, 천정용, 전성천, 권형표, 2010a, TCE 오염 지역에서의 순간수위변화시험 분석. 지하수토양환경학회 춘계학술대회(초록), 군산대학교, pp. 132.
  10. 조윤주, 이진용, 천정용, 전성천, 권형표, 2010b, TCE 오염 지역에서의 양수시험 결과 분석. 춘계 지질과학기술공동학술대회(초록), 대구 EXCO, pp. 168.
  11. 조윤주, 이진용, 이명재, 김형수, 2010c, TCE 오염 지하수질 특성 및 오염물질 군집분석. 지질학회지, 46(1), 49-60.
  12. 최병수, 1998, 단공 양수시험에 의한 대수층조사 방법. 농공기술 60('98.9), 101-110.
  13. 최병수, 2007, 단공시험 해석에서 저류계수의 보정방법. 지하수토양환경, 12(3), 36-43.
  14. 최현미, 이진용, 천정용, 전성천, 권형표, 2010, 단계양수 시험을 통한 최적양수량, 우물효율 및 영향반경 산정. 지질공학 20(2), 127-136.
  15. 한정상, 1998, 지하수환경과 오염, 박영사, 서울, 1071 p.
  16. 함세영, 김문수, 성익환, 이병대, 김광성, 2001, 순간충격시험에 의한 화강암지역이 수리적 매개변수 산출. 지질공학, 11(1), 63-79.
  17. Baek, W. and Lee, J.Y., 2010, Source apportionment of trichloroethylene in groundwater of an industrial complex in Korea: a 15-year dispute and perspective. Water and Environment Journal (in press).
  18. Bouwer, H., 1989, The Bouwer and Rice slug test- an update. Ground Water, 27, 304-309. https://doi.org/10.1111/j.1745-6584.1989.tb00453.x
  19. Bouwer, H. and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, 12(3), 423-428. https://doi.org/10.1029/WR012i003p00423
  20. Butler, J.J.Jr. and Healey, J.M., 1998, Relationship between pumping-test and slug-test parameters: scale effect of artifact?. Ground Water, 36(2), 305-313. https://doi.org/10.1111/j.1745-6584.1998.tb01096.x
  21. Butler, J.J.Jr., McElwee, C.D. and Wenzhi, L., 1996, Improving the quality of parameter estimates obtained from slug tests. Ground Water, 34(3), 480-490. https://doi.org/10.1111/j.1745-6584.1996.tb02029.x
  22. Cooper Jr., H.H., Bredehoeft, J.D. and Papadopulos, I.S., 1967, Response of a finite-diameter well to an instantaneous charge of water. Water Resources Research, 3(1), 263-269. https://doi.org/10.1029/WR003i001p00263
  23. Dawson, K.J. and Istok, J.D., 1991, Aquifer Testing: Design and Analysis of Pumping and Slug Tests, Lewis Publishers, Michigan, 344 p.
  24. Hantush, M.S., 1964, Hydraulics of wells, In: V.T. Chow (ed.), Advances in Hydrosciences, Academic Press, New York, I, 281-432.
  25. Jo, Y.J., Lee, J.Y., Yi, M.J., Kim, H.S. and Lee, K.K., 2010, Soil contamination with TCE in an industrial complex: contamination levels and implication for groundwater contamination. Geosciences Journal (submitted).
  26. Kawecki, M.W., 1995, Meaningful interpretation of stepdrawdown tests, Ground Water, 33(1), 23-32. https://doi.org/10.1111/j.1745-6584.1995.tb00259.x
  27. Ko, N.Y. and Lee, K.K., 2010, Information effect on remediation design of contaminated aquifers using the using the pump & treat method. Stochastic Environmental Research & Risk Assessment, 24(5), 649-660. https://doi.org/10.1007/s00477-009-0352-9
  28. Kruseman, G.P. and de Ridder, N.A., 1991, Analysis and Evaluation of Pumping Test Data, 2nd Edition, International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands, 378 p.
  29. Lee, J.Y. and Lee, K.K., 1999, Analysis of the quality of parameter estimates from repeated pumping and slug tests in a fractured porous aquifer system in Wonju, Korea. Ground Water, 37(5), 692-700. https://doi.org/10.1111/j.1745-6584.1999.tb01161.x
  30. Mas-Pla, J., Yeh, T.-C.J., Williams, T.M. and McCarthy, J.F., 1997, Analyses of slug tests and hydraulic conductivity variations in the near field of a two-well tracer experiment site. Ground Water, 35(3), 492-501. https://doi.org/10.1111/j.1745-6584.1997.tb00110.x
  31. Papadopulos, I.S., Bredehoeft, J.D. and Cooper JR., H.H., 1973, On the analysis of ''slug test'' data. Water Rewour Research, 9, 1087-1089. https://doi.org/10.1029/WR009i004p01087
  32. Suk, H.J. and Yeh, G.T., 2010, Development of particle tracking algorithms for various types of finite elements in multi-dimensions. Computers and Geosciences, 36, 564-568. https://doi.org/10.1016/j.cageo.2009.09.011