• Title/Summary/Keyword: 토양 탄소 격리

Search Result 23, Processing Time 0.035 seconds

Biochar for soil carbon sequestration (토양탄소격리를 위한 바이오차)

  • Woo, Seung Han
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.201-211
    • /
    • 2013
  • Biochar is charred materials generated during pyrolysis processes in the absence of oxygen using biomass, resulting in high carbon contents. In recent years, biochar has attracted more increasingly due to its potential role in carbon sequestration, renewable energy, waste management, soil amendment for agricultural use, and environmental remediation. Since biochar has a long-term stability in soil for thousands of years, biochar can be carbon negative compared to carbon-neutral biomass energy that decomposes eventually. Moreover, when biochar is applied to soil, crop production can be largely improved due to its high pH and its superior ability to retain water and nutrients. This paper review the research trends of biochar including the principles of carbon sequestration by biochar, its physico-chemical properties, and its applications on agricultural and environmental area.

Carbon Storage and Sequestration in Constructed Wetlands: A Systematic Review (국내 및 국외 적용된 인공습지 내 Bibliometric Analysis을 이용한 탄소저장 및 탄소격리 능력 분석)

  • M. E. L. Robles;N. J. D. G. Reyes;H. S. Choi ;M. S. Jeon; L. H. Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.132-144
    • /
    • 2023
  • The use of constructed wetlands (CWs) to sequester carbon has been a topic of interest in recent studies. However, CWs have been found to be both carbon sinks and carbon sources, thus leaving uncertainties about their role in carbon neutrality initiatives. To address the uncertainties, a bibliometric and comprehensive review on carbon sequestration in CWs was conducted. Upon forming various scripts using CorText Manager, it was found that a majority of the studies focused on the effectiveness of CWs to remove nutrients, particularly nitrogen. The results of the comprehensive review revealed that high carbon concentrations and carbon sequestration rates in CW soils are dependent on the vegetation types used, the ages of the CWs, and the organic content of inflow water entering the CWs. The Typha genus was the most dominant plant genus used in the CWs from the reviewed studies and was associated with the highest carbon sequestration rates documented in this review study. Furthermore, the relatively high ability of tree species, in comparison to emergent plants, to sequester carbon was observed. Therefore, incorporating tree species into CW designs and adding them to emergent plants is seen as a potential breakthrough approach to improve the ability of CWs to sequester carbon and ultimately contribute to mitigating climate change.

친환경농업 - 농촌의 다양한 바이오매스 자원과 바이오숯을 이용한 토양탄소 격리기술

  • Seo, U-Deok
    • 농업기술회보
    • /
    • v.50 no.2
    • /
    • pp.25-26
    • /
    • 2013
  • 최근 대체에너지 자원으로 주목받고 있는 농업부문의 바이오매스 잠재발생량이 연간 1,100만톤 이상이며, 이를 잠재 에너지 부존량으로 환산하면 약 460만 TOE에 해당된다. 그러나 농업부산물을 활용한 바이오매스 활용이 농업분야 온실가스 감축 및 에너지 절약에 중요한 역할을 할 수 있음에도 불구하고, 그에 대한 연구가 부족했다. 농업활동 과정에서 발생되는 바이오매스 자원 잠재량을 알아보고 이들 바이오매스를 활용한 토양탄소 격리기술에 대하여 소개한다.

  • PDF

Estimation of Carbon Sequestration and Its Profit Analysis with Different Application Rates of Biochar during Corn Cultivation Periods (옥수수 재배기간 동안 바이오차 시용 수준에 따른 탄소 격리량 산정 및 이익 분석)

  • Shin, JoungDu;Choi, Yong-Su;Lee, SunIl
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.83-90
    • /
    • 2016
  • Despite the ability of biochar to enhance soil fertility and to mitigate greenhouse gas, its carbon sequestration and profit analysis with arable land application have been a few evaluated. This study was conducted to estimate carbon sequestration and to evaluate profit of greenhouse gas mitigation during corn cultivation periods. For the experiment, the biochar application rates were consisted of pig compost(non application), 2,600(0.2%), 13,000(1%), and 26,000(2%) kg/ha based on pig compost application. For predicting soil carbon sequestration of biochar application, it was appeared to be linear model of Y = 0.5523X - 742.57 ($r^2=0.939^{**}$). Based on this equation, soil carbon sequestration by 0.2, 1 and 2% biochar application was estimated to be 1,235, 3,978, and 14,794 kg/ha, and their mitigations of $CO_2$-eq. emissions were estimated to be 4.5, 14.6, and 54.2 ton/ha, respectively. Their profits were estimated at $14.6 for lowest and $452 for highest. In Korea Climate Exchange, it was estimated that the market price of $CO_2$ in corn cultivation periods with 0.2, 1 and 2% biochar application was $35.6, $115.3 and $428.2 per hectare, respectively. For the plant growth response, it was observed that plant height and fresh ear yield were not significantly different among the treatments. Therefore, these experimental results might be fundamental data for assuming a carbon trading mechanism exists for biochar soil application in agricultural practices.

Feasibility of Analyzing Soil Organic Carbon Fractions using Mid-Infrared Spectroscopy (중적외선분광분석법을 이용한 토양 유기 탄소 분획 분석)

  • Hong, Seung-Gil;Shin, JoungDu;Park, Kwang-Lai;Lee, Sang-Beom;Kim, Jinho;Kim, Seok-Cheol;Shiedung, Henning;Amelung, Wulf
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.85-92
    • /
    • 2015
  • For concerning the climate change issues, the carbon sequestration and importance of soil organic matter are receiving high attention. To evaluate carbon sequestration in soil is important to determine the soil organic carbon (SOC) fractions such as WESOC (Water extractable soil organic carbon), and $CO_2$ emission by soil microbial respiration. However, the analyses for those contents are time-consuming procedure. There were studied the feasibility of MIRS (Mid-Infrared Spectroscopy), which has short analysis time for determining the WESOC and an incubated carbon in this study. Oven-dried soils at $100^{\circ}C$ and $350^{\circ}C$ were scanned with MIRS and compared with the chemically analyzed WESOC and cumulative carbon dioxide generated during 30, 60, 90, and 120 days of incubation periods, respectively. It was observed that an optimized determination coefficient was 0.6937 between WESOC and untreated soil processed by spectrum vector normalization (SNV) and 0.8933 between cumulative $CO_2$ from 30 days incubation and soil dried at $350^{\circ}C$ after subtracting air-dried soil processed by 1st derivatives. Therefore, it was shown that Quantification of soil organic carbon fractions was possibility to be analyzed by using MIRS.

Carbon Mineralization in different Soils Cooperated with Barley Straw and Livestock Manure Compost Biochars (토양 종류별 보릿짚 및 가축분 바이오차 투입이 토양 탄소 무기화에 미치는 영향)

  • Park, Do-Gyun;Lee, Jong-Mun;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Park, Hye-Ran;Oh, Taek-Keun;Lee, Sun-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.67-83
    • /
    • 2022
  • Biochar is a carbon material produced through the pyrolysis of agricultural biomass with limited oxygen condition. It has been suggested to enhance the carbon sequestration and mineralization of soil carbon. Objective of this study was to investigate soil potential carbon mineralization and carbon dioxide(CO2) emissions in different soils cooperated with barely straw and livestock manure biochars in the closed chamber. The incubation was conducted during 49 days using a closed chamber. The treatments consisted of 2 different biochars that were originated from barley straw and livestock manure, and application amounts were 0, 5, 10 and 20 ton ha-1 with different soils as upland, protected cultivation, converted and reclaimed. The results indicated that the TC increased significantly in all soils after biochar application. Mineralization of soil carbon was well fitted for Kinetic first-order exponential rate model equation (P<0.001). Potential mineralization rate ranged from 8.7 to 15.5% and 8.2 to 16.5% in the barely straw biochar and livestock manure biochar treatments, respectively. The highest CO2 emission was 81.94 mg kg-1 in the upland soil, and it was more emitted CO2 for barely straw biochar application than its livestock biochar regardless of their application rates. Soil amendment of biochar is suitable for barely straw biochar regardless of application rates for mitigation of CO2 emission in the cropland.

Evaluation of Efficiency to Plant Growth in Horticultural Soil Applied Biochar Pellet for Soil Carbon Sequestration (토양 탄소 격리 적용을 위한 바이오차 팰렛 혼합 상토를 사용한 작물 재배 효율성 평가)

  • Shin, JoungDu;Choi, YoungSu;Choi, Eunjung;Kim, MyungSook;Heo, JeongWook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.73-78
    • /
    • 2017
  • Objective of this experiment was to evaluate efficiency of application of biochar pellet in case of application of soil carbon sequestration technology. The treatments were consisted of control as general agricultural practice method, pellet(100% pig compost), biochar pellets with mixture ratio of pig compost(9:1, 8:2, 6:4, 4:6, 2:8) for comparatives of pH, EC, $NH_4-N$ and $NO_3-N$ concentrations, and yields in the nursery bed applied biochar pellets after lettuce harvesting. The application rates of biochar pellet was 6.6g/pot regardless of their mixed rates based on recommended amount of application (330kg/10a) for lettuce cultivation. pH in the nursery bed applied different biochar pellets after lettuce harvesting was only increased in the treatment plot of pig compost pellet application, but decreased in 4:6 and 2:8 pellet application plots. However, EC was observed to be not significantly different among the treatments. $NH_4-N$ concentration was only increased in the treatment plot of pig compost pellet application, but $NO_3-N$ concentrations were decreased as compared to the control. Yields in the treatments of 9:1, 8:2 and 4:6 biochar pellet application plot were increased from 9.5% to 11.4%. Therefore, this biochar pellet application might be useful for soil carbon sequestration and greenhouse gas mitigation in the agricultural farming practices because it was appeared to be a positive effect on lettuce growth.

Effects of Biochar Pellet Application on the Growth of Pepper for Development of Carbon Sequestration Technology in Agricultural Practice (토양 탄소 격리 기술 개발을 위한 바이오차 팰렛 시용에 따른 고추 생육 효과)

  • Shin, JoungDu;Choi, YoungSu;Lee, SunIl;Hong, SeungChang;Lee, JongSik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.87-92
    • /
    • 2017
  • Objective of this experiment was to evaluate the effect on pepper growth to application of biochar pellet in case of development of soil carbon sequestration technology. The treatments consisted of control as a general agricultural practice method, pellet (100% pig compost), biochar pellets with mixture ratio of pig compost (9:1, 8:2, 6:4, 4:6, 2:8) for comparison of total carbon contents, $NH_4-N$ concentrations, and total biomass in the pots applied with biochar pellets after pepper harvesting. The application rates of biochar pellet was 8.8 g/pot regardless of their mixed rates based on recommended amount of application (440 kg/10a) for pepper cultivation. For the experimental results, Total carbon contents in the treatments were low from 1.8 to 2.6 fold as compared to the control. $NH_4-N$ concentrations were not significantly different among the treatment plots as compared to the control, but $NO_3-N$ was not detected in the all treatment plots. However, total biomass was not only significantly different between the control and 2:8 (biochar : pig compost) biochar pellet application plot even if the other treatments were low. Therefore, this biochar pellet application might be further modified for soil carbon sequestration in agricultural farming practices.

Effects of Soil-Amended Bottom Ash on Decomposition Rates of Organic Matter as Investigated by an Enforced-Aeration Respirometer (호기순환 호흡계를 이용한 토양처리 석탄바닥재의 유기물 분해에 미치는 영향)

  • Jung, Seok-Ho;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.253-259
    • /
    • 2012
  • Disposal of high amount of coal combustion by-products, such as fly ash and bottom ash, is of a great concern to the country, due to the huge treatment cost and land requirement. On the other hand, those coal-ash wastes are considered to have desirable characteristics that may improve physical, chemical, and biological properties of soils. Especially, compared with fly ash, bottom ash has a larger particle size, porous surface area, and usable amount of micronutrients. In the present study, we examined bottom as a soil amendment for mitigating $CO_2$ emission and enhancing carbon sequestration in soils fertilized with organic matter (hairy vetch, green barely, and oil cake fertilizer). Through laboratory incubation, $CO_2$ released from the soil was quantitatively and periodically monitored with an enforced-aeration and high-temperature respirometer. We observed that amendment of bottom ash led to a marked reduction in $CO_2$ emission rate and cumulative amount of $CO_2$ released, which was generally proportional to the amount of bottom ash applied. We also found that the temporal patterns of $CO_2$ emission and C sequestration effects were partially dependent on the relative of proportion labile carbon and C/N ratio of the organic matter. Our results strongly suggest that amendment of bottom ash has potential benefits for fixing labile carbon as more stable soil organic matter, unless the bottom ash contains toxic levels of heavy metals or other contaminants.