DOI QR코드

DOI QR Code

Feasibility of Analyzing Soil Organic Carbon Fractions using Mid-Infrared Spectroscopy

중적외선분광분석법을 이용한 토양 유기 탄소 분획 분석

  • Hong, Seung-Gil (Department of Agricultural Environment, National Academy of Agricultural Science, Rural Development Administration) ;
  • Shin, JoungDu (Department of Agricultural Environment, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Kwang-Lai (Department of Agricultural Environment, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Sang-Beom (Department of Agricultural Environment, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jinho (Department of Agricultural Environment, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Seok-Cheol (Department of Agricultural Environment, National Academy of Agricultural Science, Rural Development Administration) ;
  • Shiedung, Henning (Soil Science Division, INRES, University of Bonn) ;
  • Amelung, Wulf (Soil Science Division, INRES, University of Bonn)
  • 홍승길 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 신중두 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 박광래 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 이상범 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 김진호 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 김석철 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 헤닝 쉬둥 (독일 본대학교) ;
  • 불프 아멜룽 (독일 본대학교)
  • Received : 2015.09.07
  • Accepted : 2015.09.17
  • Published : 2015.09.30

Abstract

For concerning the climate change issues, the carbon sequestration and importance of soil organic matter are receiving high attention. To evaluate carbon sequestration in soil is important to determine the soil organic carbon (SOC) fractions such as WESOC (Water extractable soil organic carbon), and $CO_2$ emission by soil microbial respiration. However, the analyses for those contents are time-consuming procedure. There were studied the feasibility of MIRS (Mid-Infrared Spectroscopy), which has short analysis time for determining the WESOC and an incubated carbon in this study. Oven-dried soils at $100^{\circ}C$ and $350^{\circ}C$ were scanned with MIRS and compared with the chemically analyzed WESOC and cumulative carbon dioxide generated during 30, 60, 90, and 120 days of incubation periods, respectively. It was observed that an optimized determination coefficient was 0.6937 between WESOC and untreated soil processed by spectrum vector normalization (SNV) and 0.8933 between cumulative $CO_2$ from 30 days incubation and soil dried at $350^{\circ}C$ after subtracting air-dried soil processed by 1st derivatives. Therefore, it was shown that Quantification of soil organic carbon fractions was possibility to be analyzed by using MIRS.

기후변화 문제와 관련하여 탄소 격리와 토양 유기물의 중요성에 대한 관심이 증가하고 있다. 토양 탄소 격리를 산정하기 위해서는 물 추출 토양 유기탄소(WESOC)와 토양 호흡에 의해 이산화탄소로 배출되는 탄소량과 같은 토양 유기탄소를 분석하는 것이 중요하다. 이러한 성분의 분석에는 시간이 많이 소요된다. 따라서 본 연구에서는 분석시간이 짧게 소요되는 중적외선분광분석법으로 물 추출 유기탄소와 토양 호흡에 의한 이산화탄소량을 분석할 수 있는 가능성을 알아보았다. 토양을 $100^{\circ}C$$350^{\circ}C$ 건조오븐에서 처리하고 중적외선분광계로 분석하여 WESOC와 30일, 60일, 90일, 120일 간 토양호흡에 의해 발생하는 이산화탄소량과의 상관을 분석하였다. 물 추출 토양 유기탄소에 대한 예측 모델에서는 표준 일반 변수화(SNV) 전처리를 통해 0.6937의 결정 계수를 보였고 30일간의 토양 호흡 발생 이산화탄소 예측 모델에서는 $350^{\circ}C$ 건조 토양에 대해 1차 도함수 전처리를 통해 0.8933의 결정 계수를 보여 중적외선분광분석법을 사용하여 토양 중 유기탄소의 분획별 정량에 사용할 수 있는 가능성을 보였다.

Keywords

References

  1. Bastida, F., Zsolnay, A., Hernandez, T. and Garciia, C.. "Past, present and future of soil quality indices: a biological perspective", Geoderma, 147, pp. 159-171. (2008). https://doi.org/10.1016/j.geoderma.2008.08.007
  2. Minasny, B., McBratney, A.B. and Salvador-Blanes, S., "Quantitative models for pedogenesis— review", Geoderma, 144, pp. 140-157. (2008). https://doi.org/10.1016/j.geoderma.2007.12.013
  3. Barros, N., Gallego, M. and Feijoo, S., "Calorimetry and soil", Thermochim. Acta., 458, pp. 11-17. (2007a). https://doi.org/10.1016/j.tca.2007.01.010
  4. Barros, N., Gallego, M. and Feijoo, S., "Sensitivity of calorimetric indicators of soil microbial activity", Thermochim Acta., 458, pp. 18-22. (2007b). https://doi.org/10.1016/j.tca.2006.12.020
  5. Plante, A.F., Fernandez, J.M. and Leifeld, J., "Application of thermal analysis techniques in soil science", Geoderma, 153, pp. 1-10. (2009). https://doi.org/10.1016/j.geoderma.2009.08.016
  6. Siewert, C., Investigation of the Thermal and Biological Stability of Soil Organic Matter, Habilitation at Technical University of Berlin, Institute of Ecology, Shaker Verlag GmbH, Aachen. (2001).
  7. Siewert, C., "Rapid screening of soil properties using thermogravimetry", Soil Science Society of America Journal, 68, pp. 1656-1661. (2004). https://doi.org/10.2136/sssaj2004.1656
  8. Zhang, L., LeBoeuf, E. and Xing, B., "Thermal analytical investigation of biopolymers and humic- and carbonaceous-based soil and sediment organic matter", Environ Sci Technol., 41, pp. 4888-4894. (2007). https://doi.org/10.1021/es063106o
  9. Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S. and Trumbore, S.E., "Persistence of soil organic matter as an ecosystem property", Nature, 478, pp. 49-56. (2011). https://doi.org/10.1038/nature10386
  10. White, R.E., Introduction to the principles and practice of soil science, 2nd ed. Oxford: Blackwell, (1987).
  11. Ghani A., Dexter M. and Perrott K.W., "Hot-water extractable carbon in soils; a sensitive measurement for determining impacts of fertilisation, grazing and cultivation, Soil Biology and Biochemistry, 35(9), pp. 1231-1243. (2003). https://doi.org/10.1016/S0038-0717(03)00186-X
  12. Smith, T.E., Kolka, R.K., Zhou, X., Helmers, M.J., Cruse, R.M. and Tomer, M.D., "Effects of native perennial vegetation buffer strips on dissolved organic carbon in surface runoff from an agricultural landscape", Biogeochemistry, 120, pp. 121-132. (2014). https://doi.org/10.1007/s10533-014-9985-y
  13. http://en.wikipedia.org/wiki/Mercury_cadmium_telluride
  14. Geladi, P. and Kowalski, B.R., "Partial Least-Squares Regression -a Tutorial", Analytica Chimica Acta, 185, pp. 1-7. (1986). https://doi.org/10.1016/0003-2670(86)80028-9
  15. Chang, C.-W., Laird, D.A., Mausbach, M.J. and Hurburgh, C.R.J., "Near infrared reflectance spectroscopy -Principal components regression analysis of soil samples", Soil Science Society of America Journal, 65, pp. 480-90. (2001). https://doi.org/10.2136/sssaj2001.652480x
  16. Yuste, J.C., Ma, S. and Baldocchi, D.D., "Plant-soil interactions and acclimation to temperature of microbial-mediated soil respiration may affect predictions of soil CO2 efflux", Biogeochemistry, 98, pp. 127-138. (2010). https://doi.org/10.1007/s10533-009-9381-1
  17. Haberhauer, G., Rafferty, B., Strebl, F. and Gerzabeck, M.H., "Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy", Geoderma, 83, pp. 331-42. (1998). https://doi.org/10.1016/S0016-7061(98)00008-1
  18. Leifeld, J., "Application of diffuse reflectance FT-IR spectroscopy and partial least squares regression to predict NMR properties of soil organic matter", European Journal of Soil Science, 57, pp. 846-57. (2006). https://doi.org/10.1111/j.1365-2389.2005.00776.x
  19. Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., Mentler, A. and Gerzabek, M.H., "FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, $Na_4P_2O_7$, and $Na_2CO_3$ extraction procedures", Journal of Plant Nutrition and Soil Science, 6, pp. 522-29. (2007).