DOI QR코드

DOI QR Code

Evaluation of Efficiency to Plant Growth in Horticultural Soil Applied Biochar Pellet for Soil Carbon Sequestration

토양 탄소 격리 적용을 위한 바이오차 팰렛 혼합 상토를 사용한 작물 재배 효율성 평가

  • Shin, JoungDu (Department of Agricultural Environment, National Institute of Agricultural Science, RDA) ;
  • Choi, YoungSu (Department of Agricultural Environment, National Institute of Agricultural Science, RDA) ;
  • Choi, Eunjung (Department of Agricultural Environment, National Institute of Agricultural Science, RDA) ;
  • Kim, MyungSook (Department of Agricultural Environment, National Institute of Agricultural Science, RDA) ;
  • Heo, JeongWook (Department of Agricultural Engineering, National Institute of Agricultural Science, RDA)
  • 신중두 (국립농업과학원 농업환경부) ;
  • 최용수 (국립농업과학원 농업환경부) ;
  • 최은정 (국립농업과학원 농업환경부) ;
  • 김명숙 (국립농업과학원 농업환경부) ;
  • 허정욱 (국립농업과학원 농업공학부)
  • Received : 2017.09.05
  • Accepted : 2017.09.12
  • Published : 2017.09.30

Abstract

Objective of this experiment was to evaluate efficiency of application of biochar pellet in case of application of soil carbon sequestration technology. The treatments were consisted of control as general agricultural practice method, pellet(100% pig compost), biochar pellets with mixture ratio of pig compost(9:1, 8:2, 6:4, 4:6, 2:8) for comparatives of pH, EC, $NH_4-N$ and $NO_3-N$ concentrations, and yields in the nursery bed applied biochar pellets after lettuce harvesting. The application rates of biochar pellet was 6.6g/pot regardless of their mixed rates based on recommended amount of application (330kg/10a) for lettuce cultivation. pH in the nursery bed applied different biochar pellets after lettuce harvesting was only increased in the treatment plot of pig compost pellet application, but decreased in 4:6 and 2:8 pellet application plots. However, EC was observed to be not significantly different among the treatments. $NH_4-N$ concentration was only increased in the treatment plot of pig compost pellet application, but $NO_3-N$ concentrations were decreased as compared to the control. Yields in the treatments of 9:1, 8:2 and 4:6 biochar pellet application plot were increased from 9.5% to 11.4%. Therefore, this biochar pellet application might be useful for soil carbon sequestration and greenhouse gas mitigation in the agricultural farming practices because it was appeared to be a positive effect on lettuce growth.

본 실험의 목적은 토양탄소 격리 기술을 개발하기 위한 바이오차 팰렛 시용에 따른 토양의 이화학성 변화 및 작물 수량 효과에 대해 평가하는 것이다. 처리는 일반적인 영농 방법으로서 대조구, 돈분 팰렛, 바이오차와 돈분 퇴비 혼합 비율별 바이오차 팰렛 시용구 (9:1, 8:2, 6:4, 4:6, 2:8)로서 구성되어 있다. 바이오차 팰렛의 사용량은 상추 재배를 위한 추천 시용량 (330kg/10a)기준으로 혼합 비율에 관계없이 6.6 g/pot이었다. 상추수확 후 상토의 pH, EC, 암모늄태 질소의 농도 변화를 분석하였다. 실험 결과로서 pH는 대조구와 비교하여 돈분팰렛 처리구에서 증가하였지만, 바이오차 팰렛 처리구(4:6 및 2:8)에서 감소하였다. EC는 처리구간에 유의차를 보이지 않았다. 암모늄태 질소 함량은 단지 돈분 팰렛 처리구에서 증가하였지만, 질산태 질소는 모든 처리구에서 감소하였으나, 상추 수량은 대조구와 비교하여 바이오차 팰렛 처리구( 9:1, 8:2 및 4:6)에서 9.5%에서 11.4%가 증가하는 것으로 나타났다. 그러므로 바이오차 팰렛 시용은 상추생육에 저해요인으로 작용하지 않고, 오히려 긍정적으로 나타남으로서, 작물 재배에 있어서 바이오차 펠렛을 시용하게 되면 토양 탄소격리 및 온실가스 완화를 위해서 유용하다고 생각된다.

Keywords

References

  1. Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A., "Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review", Plant and Soil, 337(1-2), pp. 1-18. (2010). https://doi.org/10.1007/s11104-010-0464-5
  2. Laird, A. D., "The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality", Agron. J., 100(1), pp. 178-184. (2008). https://doi.org/10.2134/agronj2007.0161
  3. MIFAFF, Annual Statistics in Food, Agriculture, Fisheries and Forestry in 2009. Korean Ministry for Food, Agriculture, Fisheries and Forestry. (2010)
  4. Hammes, K., & Schmidt, M., "Changes in biochar in soil", In J. Lemann, & S. Joseph (Eds.), Biochar for Environmental Management (pp. 169-182). Earthscan. (2009).
  5. Lehmann, J., Rilling, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D., "Biochar effects on soil biota: a review", Soil Biology and Biochemistry, 43, pp. 1812-1836. (2011). https://doi.org/10.1016/j.soilbio.2011.04.022
  6. Kimble, J. M., Lal, R., & Follett, R. R., "Agricultural practices and policy options for carbon sequestration: What we know and where we need to go", In J. M. Kimble, R. Lal, & R. F. Follet (Eds.), Agricultural practices and policies for carbon sequestration in soil (p. 512). New York: Lewis Publishers. (2002).
  7. Batjes, N. H., "Total carbon and nitrogen in the soils of the world", European Journal of Soil Science, 47, pp. 151-163. (1996). https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
  8. Deluca, T.H., Mackenzie, M.D., Gundale, M.J., & Holben, W.E., "Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa Pine forests", Soil Sci. Soc. Am. J. 70 (2), pp. 448-453. (2006). https://doi.org/10.2136/sssaj2005.0096
  9. Steiner, C., Glaser, B., Teixeira, W.G., Lehmann, J., Blum, W.E.H., & Zech, W., "Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal", J. Plant Nutr. Soil Sci. 171(6), pp. 893-899. (2008). https://doi.org/10.1002/jpln.200625199
  10. Clough, T., Bertram, J., Ray, J., Condron, L., O'Callaghan, M., Sherlock, R., & Wells, N., "Unweathered wood bio-char impact on nitrous oxide emissions from a bovine-urine amended pasture soil", Soil Sci. Soc. Am. J. 74(3), 852. (2010). https://doi.org/10.2136/sssaj2009.0185
  11. Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D., "Biochar impact on nutrient leaching from a Midwestern agricultural soil", Geoderma. 158(3-4), pp. 436-442. (2010). https://doi.org/10.1016/j.geoderma.2010.05.012
  12. Knowles, O.A., Robinson, B.H., Contangelo, A., & Clucas, L., "Biochar for the mitigation of nitrate leaching from soil amended with biosolids", Sci. Total Environ. 409(17), pp. 3206-3210. (2011). https://doi.org/10.1016/j.scitotenv.2011.05.011
  13. Clough, T., Condron, L., Kammann, C., & Muller, C.. "A review of biochar and soil nitrogen dynamics", Agronomy. 3, pp. 275-293. (2013). https://doi.org/10.3390/agronomy3020275
  14. Biederman L. A., & Harpole, W. S., "Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis", GCB Bioenergy. 5, pp. 202-214. (2013). https://doi.org/10.1111/gcbb.12037
  15. Rondon, M., Ramirez, J.A., & Lehmann, J., Greenhouse gas emissions decrease with charcoal additions to tropical soils. http://soil carboncenter.k-state.edu/conference/USDA/Abstracts/html/Abstract/Rondon.htm. (2005).
  16. Shin, J., Lee, S., Park, W., Choi, Y., Hong, S., & Park, S., "Carbon sequestration in soil cooperated with organic composts and bio-char during corn (Zea mays) cultivation", J. of Agri. Chem. and Envi. 3, pp. 151-155. (2014).
  17. Fernandez-Escobar, R., Benlloch, M., Herrera, E., & Garcia-Novelo, J.M., "Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching", Scientia Horticulturae, 101(1-2), pp. 39-49. (2004). https://doi.org/10.1016/j.scienta.2003.09.008
  18. Shin, J., Choi, Y., Lee S., Hong S., & Lee J., "Effects of Biochar Pellet Application on the Growth of Pepper for Development of Carbon Sequestration Technology in Agricultural Practice", J. of Korea Organic Resources Recycling Association, 25(1), pp. 87-92. (2017).