DOI QR코드

DOI QR Code

Effects of Soil-Amended Bottom Ash on Decomposition Rates of Organic Matter as Investigated by an Enforced-Aeration Respirometer

호기순환 호흡계를 이용한 토양처리 석탄바닥재의 유기물 분해에 미치는 영향

  • Jung, Seok-Ho (Department of Environmental & Biological Chemistry, Chungbuk National University) ;
  • Chung, Doug-Young (Department of Bioenviromental Chemistry, Chungnam National University) ;
  • Han, Gwang-Hyun (Department of Environmental & Biological Chemistry, Chungbuk National University)
  • 정석호 (충북대학교 환경생명화학과) ;
  • 정덕영 (충남대학교 생물환경화학과) ;
  • 한광현 (충북대학교 환경생명화학과)
  • Received : 2012.02.22
  • Accepted : 2012.03.12
  • Published : 2012.04.30

Abstract

Disposal of high amount of coal combustion by-products, such as fly ash and bottom ash, is of a great concern to the country, due to the huge treatment cost and land requirement. On the other hand, those coal-ash wastes are considered to have desirable characteristics that may improve physical, chemical, and biological properties of soils. Especially, compared with fly ash, bottom ash has a larger particle size, porous surface area, and usable amount of micronutrients. In the present study, we examined bottom as a soil amendment for mitigating $CO_2$ emission and enhancing carbon sequestration in soils fertilized with organic matter (hairy vetch, green barely, and oil cake fertilizer). Through laboratory incubation, $CO_2$ released from the soil was quantitatively and periodically monitored with an enforced-aeration and high-temperature respirometer. We observed that amendment of bottom ash led to a marked reduction in $CO_2$ emission rate and cumulative amount of $CO_2$ released, which was generally proportional to the amount of bottom ash applied. We also found that the temporal patterns of $CO_2$ emission and C sequestration effects were partially dependent on the relative of proportion labile carbon and C/N ratio of the organic matter. Our results strongly suggest that amendment of bottom ash has potential benefits for fixing labile carbon as more stable soil organic matter, unless the bottom ash contains toxic levels of heavy metals or other contaminants.

석탄 연소 부산물인 비산회 (fly ash)는 이산화탄소 발생을 저감하고 토양 탄소를 격리하는 효과가 있음이 보고된 바 있다. 같은 연소 부산물인 석탄바닥재 (bottom ash)는 비산회와 유사한 화학적 성질을 가지고 있고, 아울러 다공성으로 토양미생물들이 정착하는 적절한 담체로서의 기능을 가지고 있다. 이에 본 연구는 성질이 다른 유기물들 (헤어리베치, 청보리, 유박비료)이 처리된 토양에서 석탄바닥재가 토양 미생물들에 의한 유기물 분해 및 호흡량에 미치는 영향을 조사하였다. 미생물에 의한 유기물의 분해속도는 유박비료, 헤어리베치, 청보리의 순으로 높게 나타났고, 유기물과 석탄바닥재를 함께 처리하였을 때, 유의하게 감소하였다. 이산화탄소 발생량의 경시적인 변화는 유기물의 이분해성에 의존하였으나, 석탄바닥재를 처리하였을 때 유의하게 발생량이 감소하였다. 총 누적 이산화탄소 발생량 또한 이와 유사한 결과를 보였다. 석탄바닥재가 함유하고 있는 중금속 등과 같은 유해물질의 농도가 높지 않다면, 본 연구의 결과들은 석탄바닥재가 토양 처리 유기물의 이산화탄소 발생 저감 및 토양 탄소격리에 긍정적으로 기여 할 수 있는 소재로서 가능성이 있음을 보여준다.

Keywords

References

  1. Amonette, J.E., J.B. Kim, C.K. Russell, A.V. Palumbo, and W.L. Daniels. 2003. Enhancement of soil carbon sequestration by amendment with fly ash. International Ash Utilization Symposium, University of Kentucky. USA.
  2. Baldocchi, D., E. Falge, L.H. Gu, R. Olson, D. Hollinger, S. Running, P. Anthoni, C. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein, G. Katul, B. Law, X.H. Lee, Y. Malhi, T. Meyers, W. Munger, W. Oechel, K.T.P. U, K. Pilegaard, H.P. Schmid, R. Valentini, S. Verma, T. Vesala, K. Wilson, and S. Wofsy, 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem -scale carbon dioxide, water vapor, and energy flux densities, Bulletin of the American Meteorological Society. 82:2415-2434. https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
  3. Black, B.L. and R.H. Zimmerman. 2002. Mixtures of coal ash and compost as substrates for highbush blueberry. J. Amer. Soc. Hort. Sci. 127(5):869-877.
  4. Cox, P.M., R.A. Betts, C.D. Jones, S.A. Spall, and I.J. Totterdell. 2000. Acceleration of global warming due to carbon- cycle feedbacks in a coupled climate model. Nature. 408:184-187. https://doi.org/10.1038/35041539
  5. Eswaran, H., P.F. Reich, J.M. Kimble, F.H. Beinroth, E. Padmanabhan, and P. Moncharoen. 2000. Global carbon stocks. p. 15-25 In Global climate change and pedogenic carbonates, Lewis publishers, Boca raton, FL.
  6. Griffis, T.J., T.A. Black, D. Gaumont-Guay, G.B. Drewitt, Z. Nesic, A.G. Barr, K. Morgenstern, and N. Kljun. 2004. Seasonal variation and partitioning of ecosystem respiration in a southen boreal aspen forest. Agri. Forest Meteorol. 125:207-223. https://doi.org/10.1016/j.agrformet.2004.04.006
  7. Havlin, J.L., J.D. Beaton, S.L. Tisdale, and W.L. Nelson. 2005. Soil fertility and fertilizers. p.121. Pearson Education, Inc., New Jersey. USA.
  8. Intergovernmental panel on climate change (IPCC). 2001. Climate chnge 2001: The Scientific basis, Houghton et al. (eds.), Cambridge Univ. Press, New York, pp. 385-391.
  9. Ito, A. 2003. A global-scale simulation of the CO2 exchange between the atmosphere and the terrestrial biosphere with a mechanistic model including stable carbon isotopes, 1953-1999, Tellus, Ser. B, 55(2):596-612. https://doi.org/10.1034/j.1600-0889.2003.01423.x
  10. Jala, S. and D. Goyal. 2006. Fly ash as a soil ameliorant for improving crop production. Bioresource Technology. 97: 1136-1147. https://doi.org/10.1016/j.biortech.2004.09.004
  11. Jeon, H.S., H.H. Han, and Yoon, R.H. 2000. Electrostatic removal of uncombusted carbon from coal ash. Joint conference on KSGE, KSEEG and KSEG 2000 spring symposium journal. pp. 27-29 (In Korean).
  12. Kishor, A.K. 2010. Use of flyash in agriculture: A way to improve soil fertility and its productivity. Asian J. Agri. Res. 4(1):1-14. https://doi.org/10.3923/ajar.2010.1.14
  13. Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma. 123:1-22. https://doi.org/10.1016/j.geoderma.2004.01.032
  14. Lee, J.H., H.N. Seo, C.R. Kim, N.J. Kim, and K.S. Min, 2001. Characteristics of OPC-Fly ash-slag system. Cement symposium journal. 28:47-53 (In Korean).
  15. Lee, J.Y. 2011. Assessment of bottom ash amendment on soil and turfgrass qualities in golf course. Doctor thesis. Kangwon national university, Chuncheon, Korea.
  16. Lee, J.Y., H.Y. Choi, and J.E. Yang. 2010. Physicochemical effects of bottom ash on the turfgrass growth media of sandy topsoil in golf course. Kor. Turfgrass Sci. 24(2):199-204.
  17. Palumbo, A.V., J.E. Amonette, J.R. Tarver, LA. Fagan, S. Meghan, M.S. McNeilly, and W.L. Daniels. 2007. Fly ash chracteristics and carbon sequestration potential. World of coal ash (WOCA). Covington. Kentucky. USA.
  18. Palumbo, A.V., W.L. Daniels, J.A. Burger, J.F. McCarthy, S. Wullschleger, J.E. Amonette, and L.S. Fusher. 2004. Prospects for enhancing carbon sequestration and reclamation of degraded lands with fossil-fuel combustion byproducts. Adv. Envir. Res. 8:425-438. https://doi.org/10.1016/S1093-0191(02)00124-7
  19. Phelps, T.J., Y. Roh, and R.J. Lauf. 2003. Biogeochemical processes utilizing fly ash for carbon sequestration. Hilton alexandria mark center. Alexandria. Virginia. USA.
  20. RDA. 2000. Methods of analysis of soil and plant, National Institute of Agricultural Science and Technology, Rural Development Administration, Korea.
  21. Rochette, P.L. and G.L. Hutchinson. 2005. Measurement of soil respiration in situ: chamber techniques. pp. 247-286. In A.L. page et al.(ed.) Micrometeorology in agricultural systems, part 12. Soil Science Society of Analysis, Madison, WI, USA.
  22. Wearing, C., C. Birch, and J. Nairn. 2004. An assessment of tarong bottom ash for use on agricultural soils. Dev. Chem. Eng. Mineral Process. 12:531-543.
  23. Yun, M.G. 2010. Immobilization of soil bacteria with cal bottom ash for using as microbial carrier. Master thesis. Gyengsang national university, Jinju, Korea.