• Title/Summary/Keyword: 토목 BIM

Search Result 135, Processing Time 0.033 seconds

A Prototype BIM Server based viewer for Cloud Computing BIM Services (클라우드 컴퓨팅 기반 BIM 서비스를 위한 BIM 서버 기반의 뷰어 개발)

  • Yoon, Su-Won;Kim, Byung-Kon;Choi, Jong-Moon;Kwon, Soon-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1719-1730
    • /
    • 2013
  • Recently BIM technology has been expanded for using in construction project. However its spread has been delayed than the initial expectations, due to the high-cost of BIM infrastructure development, the lack of regulations, the lack of process and so forth. Therefore, this research proposes the cloud computing based BIM service for saving the cost of BIM infrastructure development and providing various BIM Services to meet the domestic process. In order to achieve this, we perform a survey on the cloud computing based BIM service and develope the prototype system as the core technology of proposed service. The developed the prototype system consists of the IFC based BIM server for IaaS (Infrastructure as a Service) and the viewer for SaaS (Software as a Service). This research also conducts the performance test for their applicability and verifies that the results of this research can be used as core components in the cloud computing based BIM service.

Algorithm of Level-3 Digital Model Generation for Cable-stayed Bridges and its Applications (Level-3 사장교 디지털 모델 생성을 위한 알고리즘 및 활용)

  • Roh, Gi-Tae;Dang, Ngoc Son;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.9 no.4
    • /
    • pp.41-50
    • /
    • 2019
  • Digital models for a cable-stayed bridge are defined considering data-driven engineering from design to construction. Algorithms for digital object generation of each component of the cable-stayed bridge were developed. Using these algorithms, Level-3 BIM practices can be realized from design stages. Based on previous practices, digital object library can be accumulated. Basic digital models are modified according to given design conditions by a designer. Once design models are planned, various applications using the models are linked the models such as estimation, drawings and mechanical properties. Federated bridge models are delivered to construction stages. In construction stage, the models can be efficiently revised according to the changed situations during construction phases. In this paper, measured coordinates are imported to the model generation algorithms and revised models are obtained. Augmented reality devices and their applications are proposed. AR simulations in construction site and in office condition are tested. From this pilot test of digital models, it can be said that Level-3 BIM practices can be realized by using in-house modeling algorithms according to different purposes.

Structural Damage Localization for Visual Inspection Using Unmanned Aerial Vehicle with Building Information Modeling Information (UAV와 BIM 정보를 활용한 시설물 외관 손상의 위치 측정 방법)

  • Lee, Yong-Ju;Park, Man-Woo
    • Journal of KIBIM
    • /
    • v.13 no.4
    • /
    • pp.64-73
    • /
    • 2023
  • This study introduces a method of estimating the 3D coordinates of structural damage from the detection results of visual inspection provided in 2D image coordinates using sensing data of UAV and 3D shape information of BIM. This estimation process takes place in a virtual space and utilizes the BIM model, so it is possible to immediately identify which member of the structure the estimated location corresponds to. Difference from conventional structural damage localization methods that require 3D scanning or additional sensor attachment, it is a method that can be applied locally and rapidly. Measurement accuracy was calculated through the distance difference between the measured position measured by TLS (Terrestrial Laser Scanner) and the estimated position calculated by the method proposed in this study, which can determine the applicability of this study and the direction of future research.

Development of Virtual Construction Equipment Simulation System Based on BIM for Civil Engineering Project (토목시설물에 대한 BIM 기반 가상건설 장비 시뮬레이션 시스템 개발)

  • Kim, Sung-Hoon;Yoon, Young-Cheol;Joo, Cheol-Beom;Yoon, Dong-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.223-230
    • /
    • 2017
  • BIM(building information modeling) has been actively applied to construction industries and to maximize its application through the life cycle of structure, various relevant technologies have been proposed. In particular, 4D sequencing management and 5D cost-related management were introduced as an improved version of the design review and interface control by 3D information design. On the other hand, the virtual construction using virtual construction equipment can sophisticatedly handle capacity, dynamic movement, collision boundaries of actual construction machines but it still stays at a low level in a technical sense. In this study, simulation systems based on BIM involving virtual construction equipment have been developed; then it is applied to the actual construction project to evaluate the safety and efficiency of construction equipments. It was confirmed that the simulation systems can be utilized to construct virtual construction site by using an effective 3D library of construction equipment and can plays a key role to secure construction safety and economic feasibility. Specifically, the simulation system are very useful for decision making by construction managers to select the optimum equipment and construction method with a better understanding for safety and cost-saving.

A Study on a Technique for Simplifying the Connection of a 3D Model and Schedule Information for 4D Simulation (4D 시뮬레이션을 위한 3D 모델 및 공정 정보의 연계 간소화 기법 연구)

  • Park, Sang Mi;Lee, Jae Hee;Yoon, Hyeong Seok;Hwang, Jae Yoeng;Kang, Hyo Jeong;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.861-868
    • /
    • 2022
  • A key use of applying building information modeling (BIM) to the construction stage of a project is to help identify construction obstacles and to visualize construction status according to the progress of the construction schedule. When employing 4D simulation for this purpose, start and finish dates for each activity and a 3D model of the activity must be prepared. In this work, in order to simplify the configuration of a 4D model, minimum attribute information of the BIM model produced in the design stage was used to construct a system that generated activity information in the construction stage using a clustering algorithm. Its usefulness as actual schedule management information was then analyzed.

Development of a Prototype for an Earthwork BIM Environment (건설현장 굴착작업을 위한 토공 BIM 프로토타입 개발)

  • Moon, Sungwoo;Son, Jihong;Hong, Soonheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.707-714
    • /
    • 2015
  • The national government is pushing hard the adoption of the BIM (Building Information Modeling) technology in the construction industry. The BIM application provides a visualized environment where the construction manager can inspect the structure of buidling structures. The application also provides information on activity progresses as well as earned values. However, BIM is mostly applied to visualize a structural object with definite forms. The BIM technology needs to be extended to include an object with non-definite forms such as earthwork operations. The objective of this study is to present a prototype of earthwork BIM in the construction operation. The prototype has been built on the attributes of geological information, construction equipment and positioning. The prototype of earthwork BIM shows a 3D graphic simulation of construction equipment moving around for digging and loading.

The Current Status and Development Plan of Construction CALS Standard (건설CALS표준 현황과 발전방안)

  • Kim, Jin-Uk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.435-436
    • /
    • 2012
  • 건설CALS 1998년부터 국토해양부에서 추진하고 있는 정보화사업으로 시스템의 개발 운영과 표준의 개발 운영의 2개 분야로 사업을 진행하고 있다. 건설CALS 표준은 건설정보분류체계, 전자도면작성표준, 도면정보교환표준, 전자문서표준, 디지털 수량산출 교환표준, 건설정보모델(BIM) 작성 납품 공통기준이 있다. 향후 건설CALS 표준은 건설정보 호환을 위하여 정보분류체계의 확장개발과 건설용어의 표준화, 토목분야의 BIM 활성화에 대비하는 토목BIM 표준의 개발이 필요하다.

  • PDF

Design of Flexible BIM System for Alignment-Based Facility (선형기반 시설물을 위한 Flexible BIM 시스템의 설계)

  • Lee, Seung Soo;Lee, Min Joo;Jeong, Jong Yoon;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.677-685
    • /
    • 2014
  • Despite the significant benefits of BIM (Building Information Modeling), it is not being vitalized for the facilities that are designed based on the horizontal and vertical alignments because of the lack of flexibility in manipulating surface models generated based on alignments. Alignment-based design produces a surface model in one piece through the definition of the typical cross-section along the alignment. Therefore, linking these alignment-based 3D surface models, that are not modularized and difficult to partition, to the required attribute information is very difficult This paper presents design of a flexible BIM technology suitable for the alignment-based civil infrastructure by providing the partitioning functionality for surface models, the contents library for cross-sectional design components, and the attribute information along with the critical functionalities needed for the design, construction and maintenance of alignment-based civil infrastructure.

3-Dimensional Modelling of Civil Engineering Structures for 3D Printing and Its Application (3D 프린터 출력을 위한 토목구조물의 3D 모델링 구성 및 활용방안)

  • Park, Sang Mi;Kim, Hyeon Seung;Han, Seon Ju;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1109-1117
    • /
    • 2017
  • Recently, 3D printer technology has been attracting attention in various industrial fields, and research papers are being conducted to utilize 3D printers in the construction industry. Actual structures such as bridges and buildings are being printed to 3D printers, and various applications such as mock-up structures using 3D printers are being proposed. In order to utilize 3D printer technology in the construction field, a 3D model is required, and the 3D BIM data produced at the design stage can be printed by a 3D printers, saving the cost and time of 3D model generation. However, 3D BIM data often does not satisfy the conditions for 3D printer output, causing many errors on output. In this paper, authors propose a problem analysis for 3D BIM model output to 3D printer and a method for reducing errors in 3D printing process of 3D BIM model. In addition, this paper presents a practical application of 3D model output from 3D printer.

A Deep Learning Model to Predict BIM Execution Difficulty Based on Bidding Texts in Construction Projects (건설사업 입찰 텍스트의 BIM 수행 난이도 추론을 위한 딥러닝 모델)

  • Kim, Jeongsoo;Moon, Hyounseok;Park, Sangmi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.851-863
    • /
    • 2023
  • The mandatory use of BIM(Building Information Model) in larger Korean public construction projects necessitates participants to have a comprehensive understanding of the relevant procedures and technologies, especially during the bidding stage. However, most small and medium-sized construction and engineering companies possess limited BIM proficiency and understanding. This hampers their ability to recognize bidding requirements and make informed decisions. To address this challenge, our study introduces a method to gauge the complexity of BIM requirements in bidding documents. This is achieved by integrating a morphological analyzer, which encompasses BIM bidding terminology, with a deep learning model. We investigated the effects of the parameters in our proposed deep learning model and examined its predictive validity. The results revealed an F1-score of 0.83 for the test data, indicating that the model's predictions align closely with the actual BIM performance challenges.