• Title/Summary/Keyword: 토목섬유 시스템

Search Result 52, Processing Time 0.024 seconds

The Influence of Moisture on the Interface Shear Strength Between Geosynthetics (토목섬유의 접촉 전단강도에 대한 함수비의 영향)

  • Seo, Min-Woo;Park, In-Joon;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2004
  • Various geosynthetics are widely installed as a liner or a protective layer of waste landfills. The interface shear strength between the layers of geosynthetics in waste landfills is an important parameter to ensure the safety of bottom and cover system design. In this study, estimations of interface shear strength between geomembrane and geotextile or Geosynthetic Clay Liners (GCL) are performed by large direct shear tests. Especially, this research is focused on the effect of moisture within the interface shear strength between geosynthetics, because most interfaces are vulnerable to rain, leachate and groundwater beneath the liners.

An Experimental Consideration of Geosynthetics-reinforced Asphalt Pavement (토목섬유 아스팔트포장의 실험적 고찰)

  • 조삼덕;김남호;한상기;이대영
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.191-198
    • /
    • 2001
  • 국내 도로포장의 주요 파손형태는 주변환경 및 반복 교통하중 조건에 의한 소성변형(rutting), 피로균열, 반사균열, 온도균열 등이 있는데, 포장이 설계수명에 도달하기 이전에 주로 발생하며 이로 인한 도로포장의 유지관리에 막대한 국가예산이 낭비되고 있는 실정이다. 본 연구에서는 토목섬유 아스팔트 포장 시스템을 체계적으로 정립하기 위해 휠트래킹 시험과 균열저항성 시험을 수행하여 토목섬유 아스팔트 포장의 소성변형 및 균열 저항성을 분석하였다. 이러한 실험결과를 통해 아스팔트 포장에서의 토목섬유 보강 효과가 평가되었다.

  • PDF

Laboratory Model Tests on the Load Transfer in Geosynthetic-Reinforced and Pile-Supported Embankment System (토목섬유보강 성토지지말뚝시스템에서의 하중전이 효과에 관한 모형실험)

  • Hong, Won-Pyo;Lee, Jae-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.9-18
    • /
    • 2010
  • A series of model tests were performed to investigate the load transfer by soil arching in geosynthetic-reinforced and pile-supported(GRPS) embankment systems. In the model tests, model piles with isolated cap were inserted in the model container and geosynthetics was laid on the pile caps below sand fills. The settlement of soft ground was simulated by rubber form. The loads acting on pile caps and the tensile strain of geosynthetics were monitored by data logging system. At the given interval ratio of pile caps, the efficiency in GRPS embankment systems increased with increasing the height of embankment fills, then gradually converged at constant value. Also, at the given height of embankment fills, the efficiency decreased with increasing the pile spacing. The embankment loads transferred on pile cap by soil arching increased when the geosynthetics installed with piles. This illustrated that reinforcing with the geosynthetics have a good effect to restraint the movement of surrounding soft grounds. The load transfer in GRPS embankment systems was affected by the interval ratio, height of fills, properties of grounds and tensile stiffness and so on.

  • PDF

Theoretical Analysis of Soil Arching in Geosynthetic-Reinforced and Pile-Supported Embankment Systems (토목섬유보강 성토지지말뚝시스템의 지반아칭에 관한 이론해석)

  • Hong, Won-Pyo;Lee, Jae-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.133-141
    • /
    • 2008
  • Theoretical analysis are developed to estimate the load transfer by soil arching in geosynthetic-reinforced and pile-supported(GRPS) embankment systems. According to the results of analyses, the efficiency of embankment pile systems increases when the geosynthetics are installed with piles. Especially the increment of efficiency is more remarkable in the low embankment height, where soil arching can not be fully developed. The factors affecting the load transfer in GRPS embankment systems are the pile spacing, the height and properties of embankments, and the strength of geosynthetics. The efficiency decreases with increasing the pile spacing, while it increases with the height and internal friction angle of embankment fills, and the strength of geosynthetics. These results of analyses show the proposed analysis method is resonable to estimate the soil arching in GRPS embankment systems.

Analysis of Cyclic Loading Transferred Mechanism on Geosynthetic-Reinforced and Pile-Supported Embankment (토목섬유로 보강된 성토지지말뚝 시스템의 반복하중 전이 메커니즘 분석)

  • Lee, Sung-Jee;Yoo, Min-Taek;Lee, Su-Hyung;Baek, Min-Cheol;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.79-91
    • /
    • 2016
  • Geosynthetic-reinforced and Pile-supported (GRPS) embankment method is widely used to construct structures on soft ground due to restraining residual settlement and their rapid construction. However, effect of cyclic loading has not been established although some countries suggest design methods through many studies. In this paper, cyclic loading tests were conducted to analyze dynamic load transfer characteristics of pile-supported embankment reinforced with geosynthetics. A series of 3 case full scale model tests which were non-reinforced, one-layer-reinforced, two-layer reinforced with geosynthetics were performed on piled embankments. In these series of tests, the height of embankment and pile spacing were selected according to EBGEO (2010) standard in Germany. As a result of the vertical load parts on the pile and on the geosynthetic reinforcement measured separately, cyclic loads transferred by only arching effect decreased with strength geosynthetic-reinforced case. However, final loads on the pile showed no differences among the cases. These results conflict with previous studies that reinforcement with geosynthetics increases transfer load concentrated on piles. In addition, it is observed that the load transferred to pile decreases at the beginning of cycle number due to reduction of arching effected by cyclic loading. Based on these results, transferred mechanism for cyclic load on GRPS system has been presented.

Study on Geosynthetics Appllication Methods for Railway Subbase (철도노반에서 토목섬유의 적용방안에 관한 연구)

  • 심재범;채영수
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.68-76
    • /
    • 2000
  • Such traditional construction methods as the interchange or improvement of railway subbase maintenance and reinforcement have many problems in the matters of construction period, constructive and economical efficiency aspects. This paper will describe the alternative railway subbase reinforcement method based on geosynthetics system. It is presently very popular in Germany and Japan. In summary it is to say, that geosynthetics used at fine grained subsoils to a strong improvement of the whole railroad system.

  • PDF

Soil Arching in Embarikments Suppoyed by Piles with Geosynthethics (말뚝과 토목섬유로 지지된 성토지반의 아칭효과)

  • Hong, Won-Pyo;Lee, Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.53-66
    • /
    • 2007
  • A series of model tests were performed to investigate the soil arching effect in embankments supported by piles with geosynthetics. In the model tests, model piles with isolated cap were inserted through the holes in a steel plate, which could be operated up and down. Then geosynthetics was laid on the pile caps below sand fills. The settlement of soft ground was simulated by lowering the plate. As the plate was lowered, the soil arching was mobilized in the embankments. The deformation of both the sand fills and geosynthetics were captured by camera. Also the loads acting on pile cap and the tensile strain of geosynthetics were monitored by data logging system. Model tests showed that the embankment loads transferred on pile cap by soil arching Increased rapidly with settlement of the soft ground. In case of the absence of geosynthetics, the loads acting on pile caps dropped to residual value after peak value, whereas loads on pile caps gradually increased until constant value in case of geosynthetic-reinforced. This illustrated that reinforcing with the geosynthetics has a good effect to restrain the settlement of embankments. Also, the deformation shape of geosynthetics between pile caps was circular. The embankment loads transferred on pile caps can be estimated by considering both soil arching and tensile strain of geosynthetics in embankments supported by piles with geosynthetics.

Evaluation of the Permanent Deformation Behavior on Geosynthetics-Reinforced Asphalt Pavement by using the Wheel Tracking Tests (휠트래킹 시험을 통한 토목섬유시트 보강 아스팔트포장의 소성변형 거동특성 평가)

  • Cho, Sam-Deok;Lee, Dae-Young;Kim, Jin-Hwan;Kim, Nam-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.39-46
    • /
    • 2003
  • The major pavement distress types found in the domestic roadways include rutting, fatigue cracking, and reflection cracking which are results of the environment and repeated traffic loads. These distresses usually occur before pavements approach their design life, and therefore, a significant amount of national budget is spent for maintenance of roadway pavements. The purpose of this study is to establish a geosynthetics-asphalt pavement system. For the study, wheel tracking tests are conducted to analyze the controlling effect of geosynthetics on rutting of asphalt pavement. On the basis of these works, the reinforcement effect of geosynthetics on the rutting of the asphalt pavement is clarified and deformation characteristics of geosynthetics-asphalt mixture is examined.

  • PDF

Permeability Characteristics of Geosynthetics Vertical Barrier Connections for the Prevention of Contaminants Diffusion (오염물질 확산방지를 위한 토목섬유 연직차수벽 연결부의 투수성능 평가)

  • Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Purpose: In this study, we used hydrophilic waterstop used in geosynthetics vertical barrier system to evaluate the performance of impermeability under sealing conditions. Method: ASTM D5887 and ASTM D6766 were applied to determine the capability of the connection during the geosynthetics vertical barrier system. Hydrophilic waterstop was saturated in each solution and the weight, thickness, and volume changes were analyzed over elapsed time. Hydrophilic waterstop was installed at the geosynthetics vertical barrier system connection to evaluate the permeability characteristics. Results: As the expansion reaction time of hydrophilic waterstop increased relatively under saline conditions, the decrease in permeability also showed a smaller decrease in fresh water. Furthermore, the method of engagement of the geosynthetics vertical barrier system showed somewhat better performance of the impermeability due to the large pressure resistance caused by the roll joint type than interlock type. Conclusion: In urban pollutants, which can estimate the outflow of pollutants such as oil storage facilities and industrial complexes, proactive response technologies that can prevent the contaminant diffusion can significantly reduce the damage.

Consideration of Geosynthetics Chemical Resistance Test for Long-Term Performance Evaluation (장기성능 평가를 위한 토목섬유 화학저항성 시험 고찰)

  • Jeon, Han-Yong;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.55-64
    • /
    • 2009
  • In this study, improved test methods, which consider the real site test conditions, were suggested to measure for geosynthetics chemical resistance. For this purpose index and performance tests were done to specify and regulate the test method most approaching to the installation condition and accelerated model by Arrhenius equation was applied to interpretate the experimental data. Through the analysis and comparison of the overall experimental results, we could suggest the possibility and setup of the advanced chemical resistance test method for geosynthetics fitting to the field installation conditions.